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Executive Summary 
 

1. Confidence in the New Zealand Wholesale Electricity Market is affected by 
strategic offering by generators. The workable competition model that 

underlies the New Zealand wholesale market requires careful oversight to 
ensure that competition is seen to be happening. The Electricity Authority 

(EA) is investigating ways in which this oversight can be put into effect. 
 

2. Researchers in the Electric Power Optimization Centre at the University of 

Auckland (EPOC) have been conducting studies on levels of competition in 
the New Zealand wholesale electricity market for 15 years. EPOC advocates 

the use of perfect competition benchmark models to assess levels of 
competition in the wholesale electricity market. We welcome the opportunity 
to comment on  

a. the structure, conduct and performance approach to assessing 
competition in the market; 

b. the indicators the EA has used under this approach and whether the 
EA have left out any important indicators; 

as well as a number of other issues we think the EA should consider. 
 

3. Studies of market competition typically focus on identifying exercise of 

market power by generators. EPOC’s models attempt to identify 
circumstances where market outcomes differ markedly from those expected 

from perfect competition. These can result from a number of sources: 
 

a. Exercise of market power to increase revenue; 

b. Acting to avoid risks when these cannot be hedged; 
c. Responding to signals that are produced by imperfect auction 

mechanisms. 
 

4. EPOC believes that identifying these situations in historical data provides 

some insights into how to improve the New Zealand wholesale electricity 
market design to reduce the differences between observed outcomes and 

perfectly competitive outcomes. 
 

5. The DOASA package used by the EA in their study was developed by EPOC 

researchers. Although EPOC provide advice to the EA on the capabilities and 
operation of DOASA, the study was conducted independently of EPOC, using 

data collected and compiled by EA researchers.  
 

6. EPOC has conducted past benchmark studies of the New Zealand Wholesale 

Electricity Market using the DOASA code. The most recent comprehensive 
study was of 2017. Results of this study are published on the EPOC website 

(see [9]). 
 

7. The DOASA executable used in the EA study has been upgraded to an open-

source Julia package called JADE. JADE leverages the JuMP modelling 
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language and Oscar Dowson’s open-source Julia package SDDP.jl [1], which 
originated out of the DOASA implementation of stochastic dual dynamic 
programming, but now has a large international user community. The EA are 

transitioning their hydro modelling to use the JADE package. 
 

8. JADE has extended the original DOASA model to enable several important 
features of the New Zealand system to be included in the model. These are: 

a. Arbitrary numbers of load blocks; 
b. Risk aversion; 
c. Finer resolution of transmission constraints; 

d. Steady-state water valuation; 
e. Bespoke release constraints on some reservoirs 

 
9. This submission describes the results of some experiments with JADE to 

illustrate the approach to market monitoring advocated by EPOC.  Our 

approach is as follows: 
a. Estimate end-of horizon water values for New Zealand reservoirs using 

JADE in infinite-horizon discounted-cost mode. We show how these 
water values vary with levels of social risk aversion and discount rate. 
They are also compared with the end-of horizon water values used by 

the EA in running DOASA. 
b. Compute optimal release policies using JADE applied to 2020 with 

varying levels of social risk aversion to give perfectly competitive 
counterfactual outcomes. 

c. Compare observed price levels in 2020 with counterfactual outcomes. 

 
10. The submission also illustrates the application of the EPOC river-chain model 

HydrovSPD to a sample day from 2020. This yields a dispatch solution in 
which generation from stored water is offered at its marginal water value 
throughout the day. We compare this with historical dispatch and price 

outcomes. A more detailed discussion of HydrovSPD is available in [9]. 
 

11.Our submission is aimed at presenting the elements of a rigorous process for 
market monitoring. We do not propose market design solutions that might 
reduce differences between market and counterfactual outcomes. Any such 

improvements would require extensive computational testing with 
counterfactual models before adoption. 
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Section 1: Introduction 
 

This document is a submission by The Electric Power Optimization Centre (EPOC) 

at the University of Auckland in response to a Market Monitoring Review published 

by the Electricity Authority [2]. 

EPOC is an independent research group and our response to this consultation 

document is made independently of any electricity market participant, the Electricity 

Authority, or the system operator. Our submission is focused on the methodology 

for market monitoring, and the conclusions that regulators can reasonably draw 

from market monitoring studies. 

EPOC takes the view that wholesale electricity markets work best when they are as 

close to perfectly competitive as possible. Perfect competition in markets is often 

claimed to be an unrealistic standard by which to judge wholesale electricity 

markets, to be replaced by a standard of “workable” competition. The latter 

standard unfortunately is difficult to measure or assess and is open to 

interpretation. Perfect competition, although arguably unattainable in practice, is a 

computable benchmark against which outcomes resulting from market participant 

behaviour can be measured.  

Wholesale electricity pool markets are highly structured market environments that 

are amenable to detailed analysis. The New Zealand market is unique in allowing 

public access to offer and bid data as well as access to dispatch and pricing software 

(vSPD) that can be used to investigate market outcomes against counterfactuals.  

The document is laid out as follows. In the next section we describe what we see 

as the role of the Electricity Authority in monitoring the performance of the New 

Zealand wholesale electricity market. In Section 3 we describe conditions under 

which the outcomes of a central planning solution can be used as a perfectly 

competitive benchmark for measuring outcomes in the wholesale market. Section 

4 discusses some additional factors that must be accounted for when considering 

benchmarks and proposes some approaches to handling these. In Section 5 we 

present the new features of JADE that enhance some aspects of DOASA. Section 6 

provides an analysis of 2020 to illustrate the features of JADE. In Section 7 we 

present some results from HydrovSPD, and in Section 8 we conclude the submission 

with a general discussion. 
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Section 2: The New Zealand wholesale electricity market 
 

The Electricity Authority provides regulation of the New Zealand electricity market 

with the aim of maximizing the long-term benefit of consumers. Consumers accrue 

value from using electricity that exceeds what they pay for it. The payment for 

electricity must be sufficient to cover the costs of building and operating the 

generation, transmission and distribution facilities that provide and transport the 

electricity. 

The generation costs of providing electricity can be divided into variable costs that 

depend on the level of generation, and fixed costs that do not depend on this. 

Examples of variable costs are the cost of fuel (if the plant uses gas or coal) or 

operation and maintenance costs that depend on output (such as wear and tear). 

Fixed costs cover everything else including salaries and costs of capital. 

Given fixed costs that are proportional to generation capacity and variable costs 

that are proportional to output, it is possible (in principle) to determine an optimal 

mix of dispatchable generation capacity to meet any given load profile. The simplest 

form of such an analysis uses a screening curve analysis applied to load duration 

curve to assign capacities to peaking plant, off-peak plant and baseload generation. 

Uncertainty and intermittency complicate the screening curve approach: a simple 

graphical picture is insufficient. However, the optimal capacity mix can be 

determined using stochastic optimization models (such as EPOC’s EMERALD model 

[3]). In other words, to maximize the long-term benefit of consumers, one should 

forecast demand, or a stochastic model of this, and solve a stochastic mixed integer 

program to determine the capacity expansion plan and how to operate this. 

There are several perceived problems with this planning approach that we will not 

discuss in detail here. Planning models rely on forecasts of the future (or at least 

probability distributions governing future parameters). When there is no consensus 

on these, there is some doubt that government officials will choose the best 

numbers. The incentive to make the correct decisions is attenuated in comparison 

with a market of investors “putting their money where their mouths are”. 

The solution to this is to create a market for investors in generation capacity. 

Investors earn operating surpluses when the prices they are paid for energy exceed 

their short-run costs. These surpluses then incentivise investment in capacity. If 

these markets satisfy certain mathematical assumptions, namely they are convex, 

perfectly competitive and complete, then there will exist a competitive equilibrium 

that yields the optimal level of investments that maximizes the long-term benefit 

of consumers. 

The New Zealand electricity market is based around a linear programming model 

(SPD) which (apart from some switching variables on discrete choices like direction 

of transmission flow) treats dispatch as a convex optimization problem. The 

remaining assumptions of perfect competition and completeness are not satisfied.  
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The key question facing the Electricity Authority is then “Can we use perfectly 

competitive complete market benchmarks to identify potential inefficiencies in the 

wholesale market?”  EPOC researchers have been studying this question for a 

number of years and have developed models that represent perfectly competitive 

benchmarks under various assumptions. We argue that models of this form are an 

important ingredient in assessing levels of competition in markets that have 

hydroelectric storage.  

This document describes the models, and how results should be interpreted. The 

use of the models is illustrated by applying them to the calendar year 2020. 
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Section 3: A perfectly competitive benchmark 
 

In this section of our submission, we argue for the Electricity Authority monitoring 

the wholesale market using prices computed from a perfectly competitive 

benchmark model. 

3.1 Perfect competition 

Perfect competition is a mathematical abstraction. In a deregulated setting, it 

requires sufficiently many small generator agents so that none behaves as if they 

can affect the price by their actions. The levels of market concentration can be 

measured by indices such as the Herfindahl-Hirschman Index as discussed in the 

consultation document.  Breaking large entities into smaller entities will improve 

these indices, but in a small market like New Zealand, with economies of scale in 

generation technologies, there is a limit to how much competition can be improved 

by these means. So perfect competition can be argued to be an unattainable ideal. 

On the other hand, the New Zealand wholesale electricity market is organized 

around a very specific auction format that determines economic dispatch and prices. 

In this setting, perfect competition does not require infinitely many small 

economically rational agents but can be approached by the imposition of rules that 

require generators to behave as if they could not influence prices by their actions. 

Many markets for wholesale electricity (e.g. PJM in the United States1) require 

generators to offer at their short-run marginal cost, i.e., the optimal offer curve for 

a generator that acts perfectly competitively. 

Determining short-run marginal cost for generators with hydro storage is more 

complicated. Their short-run cost is the so-called marginal water value (MWV). 

Marginal water values are an opportunity cost, inasmuch as they depend on future 

circumstances. In this sense they are a (risk-adjusted) expectation of future prices 

for wholesale electricity which are uncertain, so they should more accurately be 

termed expected risk-adjusted marginal water values. 

In some countries, e.g., Brazil, these expectations are computed by a central 

planner that decides on a probabilistic model for reservoir inflows and solves a 

large-scale dynamic programming model. The Brazilian version of this (called 

NEWAVE) implements a version of the stochastic dual dynamic programming 

algorithm (SDDP). In New Zealand the expectations are formed from the views of 

individual generators that might differ from each other. Even if the generators share 

the same probabilistic model of future inflows, they might have different 

assessments of the likelihood of dry winters that will have an effect on their 

 
1 PJM is not an energy-only market, and generators are paid a capacity payment to 

augment revenue from the energy market, so the comparison with New Zealand might be 

thought to be tenuous. We give the example merely to show that monitoring offers in 

deregulated electricity markets can be done relatively successfully. 
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assessment of marginal water values. Competition is supposed to provide some 

discipline on the estimation of water values, so that they approximate some rational 

consensus of the future. To what extent this discipline is successful in delivering 

prices that benefit consumers in the long run is the subject of the current 

consultation. 

This submission does not advocate that New Zealand adopts a system like the 

Brazilian model, where prices are determined by a centrally administered stochastic 

dynamic program. This would lead to a number of difficulties that arise from such 

centrally-planned prices.  The incentives to arrive at correct prices are absent from 

decision makers that have no money at stake. Moreover, the model used must be 

accepted by all parties, and possible litigation might occur over “incorrect” prices if 

an improved model were developed that delivered different prices as an output.  

Although the Brazilian planning approach has its disadvantages, it points toward a 

way of measuring competition, so we advocate the use of dynamic programming 

software models as a market monitoring tool. They can be used to compute 

perfectly competitive benchmark market outcomes under explicitly stated 

assumptions about parameters. A common framework can then be used to debate 

assumptions about these parameters rather than relying on an article of faith that 

workable competition will deliver the right market outcomes. 

3.2 Completeness 
It might be argued that a central planning solution for the operation of an electricity 

system is essentially different from a perfectly competitive equilibrium where agents 

maximize their own profits. The relationship between them is expressed in terms of 

“welfare theorems”. These essentially state that perfect competition and central 

planning coincide when markets are convex and complete.  

As mentioned in Section 2, the New Zealand electricity market essentially treats 

dispatch as a convex optimization problem. To ensure a correspondence with a 

central planning solution, the markets must also be complete, meaning that there 

are enough instruments traded in the market to enable prices to be formed for all 

commodities of interest.  

The use of water in the Waitaki hydro catchment is a case in point. Water in Lake 

Tekapo is released for generation by Genesis. Releases that flow into Lake Pukaki 

provide potentially valuable stored energy for Meridian. A complete market would 

price this release of water from Tekapo to Pukaki to give transfer payments from 

Meridian to Genesis. In the absence of such a price or similar mechanism2 the 

generation of Genesis and Meridian can be inefficient.  

In the presence of uncertainty and risk aversion, completeness requires that every 

future random outcome can be hedged by some traded instrument. This is not true 

in practice simply by virtue of the uncountably many future outcomes that are 

 
2 In fact the transfer is governed by alternative contractual arrangements between the companies that are 
designed to improve the efficiency of the disaggregated river chain.  
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possible. However, it has been shown, at least in computational experiments [5], 

that the availability of a few risk-trading instruments such as contracts for difference 

can make the gap from incompleteness quite small. If the market for risk is 

complete and agents are endowed with coherent risk measures, then perfectly 

competitive partial equilibrium coincides with an optimal solution to a risk-averse 

social planning problem. The mathematics that proves these results can be found 

in [4], and they are discussed in the context of hydro storage and inflow risk in [7]. 

The welfare theorems established in [4] give us confidence to be able to integrate 

the risks of electricity market participants that use (possibly) different coherent risk 

measures into a social risk measure to use in a central planning solution. This 

enables the power of EPOC optimization software such as JADE to be applied to 

construct perfectly competitive risk-averse equilibria that can serve as suitable 

benchmarks to monitor observed market outcomes. 

3.3 Repeated bidding 

A potential impediment to competitive outcomes is the structure of the auction 

design. The wholesale market in New Zealand allows generators to adjust the prices 

and quantities of offers up until gate closure. The offers submitted are used by the 

system operator to publish a provisional dispatch and prices based on forecast 

demand. What results is a sequence of pre-dispatch outcomes that converges to a 

final dispatch and a real-time price3. 

If generators were to offer a fixed supply function in each period, without the 

opportunity to revise this as demand changes, then the optimal offer to make under 

perfect competition would be at short-run marginal cost. Then as demand forecasts 

converge to their realized final values, pre-dispatch prices will converge to the 

perfectly competitive prices that correspond to these final loads. 

In practice, generator offers can be revised after every pre-dispatch with forecast 

loads. Although a rational perfectly competitive generator would adhere to a short-

run marginal cost offer throughout this process, it is natural for traders of energy 

to focus the tranches of energy offered around the predicted dispatch price. This is 

a form of bounded rationality that can lead to a sequence of pre-dispatch prices 

that do not converge on the final prices that would be obtained from perfectly 

competitive offers. The mathematics underlying this process is discussed in [10], 

where it is shown using a simple model that the discovery of prices through pre-

dispatch can lead to inefficient outcomes. 

It is difficult to say if the imperfection in pre-dispatch described above warrants a 

redesign of the New Zealand auction mechanism. It has always been taken as an 

article of faith in the New Zealand wholesale market that more frequent auctions 

lead to better outcomes, as they enable price discovery. This is certainly the case 

in auction settings where purchasers' valuations are private information, and the 

seller wishes to extract (and capture) as much of this value as she can. In an 

 
3 We note that as renewable generation capacity increases, making accurate forecasts of demand will become 
more difficult, so the issues discussed here are likely to become more important. 
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electricity market that is regulated to maximize the long-term benefit of consumers, 

more frequent pre-dispatch auctions might decrease this benefit. 

We advocate for an examination of this phenomenon by the Electricity Authority 

using pre-dispatch demand forecasts and historical offers made in response to 

these. 
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Section 4: River chains, transmission, contracting and portfolio effects 
 

Generators in the wholesale electricity market take account of many factors when 

submitting energy offers, which might affect market outcomes. Such factors are 

often brought up as reasons for offering energy at prices that differ from a modelled 

short run marginal cost. We discuss each of these in turn. 

4.1 River chains 

Offer prices for generators with stored hydroelectricity vary across the trading day. 

These prices are used by generators to control the dispatch to levels that are 

feasible for river chain operation. Block dispatch provides some freedom in this 

respect in terms of allocating generation amongst different stations on a river chain. 

The overall quantity of dispatch for the chain is controlled by pricing the last 

quantities of available generation capacity at high prices.  

Our JADE model has a weekly resolution (with several load blocks in each week) 

and so does not represent the intra-day river-chain optimization problem in the 

hour-by-hour detail required to ensure all the flow balance and environmental 

constraints are followed. In Section 7 we describe the HydrovSPD model that takes 

account of these. 

4.2 Transmission 

Gentailers in the wholesale electricity market typically have retail positions in 

different locations from their generation assets. For example, Contact Energy has 

some customers in Auckland and some generation assets in Otago. Transmission 

congestion between generators and loads produces price separation. Generators 

are paid less at their grid injection node than they must pay at the grid exit node 

serving their retail load. There is an incentive to offer in such a way as to reduce 

this price separation. 

Evidence for this behaviour is widespread (see e.g. [9]) and it does not appear to 

be explicitly precluded by market rules. However, it would not occur in a perfectly 

competitive setting. 

4.3 Contracting and portfolio effects 

Generators in the wholesale electricity market hold contract positions with energy 

purchasers. Gentailers also purchase from the spot market to satisfy demand from 

retail customers. Both contracts and retail positions provide incentives to try and 

make wholesale prices different than they would be otherwise.  

It is often claimed that contracts or retail load change the optimal offer to make 

even in a perfectly competitive setting, especially if generators are risk averse. The 

argument is as follows. If gentailer X is purchasing Q at wholesale price p and is 

generating Q at price p (assuming the same location) then this nets out and so 

wholesale price risk is removed. To ensure a generation level of Q to meet its retail 

load, it is deemed rational for X to offer the first Q units at $0/MWh. 
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However, this might be suboptimal; the optimal offer under perfect competition in 

fact remains one at marginal cost. It is possible to prove this assertion using 

arguments from supply-function equilibrium (see [12]), but a little thought will 

convince the reader that X offering Q at $0/MWh might be suboptimal. 

Suppose demand is Q and a cheaper competing plant Y was offering at a (truthful) 

positive marginal cost that was less than the lowest marginal cost of X. If X offers 

at $0/MWh then the energy Q dispatched to plant X instead of Y will incur a higher 

than optimal cost. In a competitive setting, X would offer at its marginal cost, 

dispatch Q would be to Y, and the price would be set at the marginal cost of Y at 

quantity Q.  X would then buy at this price to meet its contract, which is cheaper 

than incurring costs by generating.  

In summary, a gentailer acting in perfect competition would offer energy at its 

marginal cost irrespective of its contract or retail position. This can be shown to be 

true even if the gentailer is risk averse. Offering below marginal cost, ostensibly to 

reduce portfolio risk, is suboptimal in a perfectly competitive setting. 

In contrast, a gentailer making a strategic offer would offer a supply function that 

lies below short-run marginal cost for q<Q and above short-run marginal cost for 

q>Q (see [12]). It is easy to find instances in the historical offer stacks of New 

Zealand generators that lie below marginal cost for low dispatch quantities. Some 

of these can be explained by constraints e.g., due to unit commitment. Other 

instances are evidence of offers that would not be optimal in a perfectly competitive 

setting. 
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Section 5: JADE 
 

The DOASA executable used in the EA study has been upgraded to an open-source 

Julia package called JADE. JADE leverages the JuMP modelling language to 

represent the New Zealand electricity system, and Oscar Dowson’s open-source 

Julia package SDDP.jl [1], which has a large international user community. Given 

the same inputs, JADE reproduces the same policies as DOASA, but has many more 

features that make it more suitable for market monitoring. The EA are transitioning 

their hydro modelling capability to use the JADE package4. 

The new features are modelled in JADE using specific choices of parameters. The 

intention in this part of our submission is to show how these are modelled and 

illustrate the sensitivity of the outcomes to some choices of these parameters. The 

relevant parts of the model are laid out as follows5. 

5.1 Transmission modelling 

Although it can be expanded by providing more data, the DOASA code used by the 

EA represents the New Zealand transmission system by three nodes (NI, HAY, SI) 

and generators and loads are aggregated at these three locations. Transmission is 

approximated using a line joining the Haywards node (HAY) to the rest of the North 

island (NI) and another to the South Island (SI). 

The JADE model currently has estimated transfer capacities and loss functions for 

an 11-node transmission network. This enables the capacity of transfers between 

e.g., Otago and Canterbury to be modelled. A more detailed transmission network 

in JADE enables a more accurate evaluation of water values that differ by location. 

As observed by [11], this results in lower cost policies when simulated in the full 

transmission network. 

5.2 Demand modelling 

The DOASA code uses three load blocks (PEAK, SHOULDER, OFFPEAK) to represent 

the load duration curve in any given week. The estimation of these load blocks using 

vSPD data is outlined in [9]. In JADE, the number of load blocks is arbitrary. We 

have developed a model with 8 load blocks in each week. The number of hours in 

each load block is determined using a separate EPOC optimization tool that yields 

blocks with a best fit to historical demand values. The increase in the number of 

blocks enables a more accurate representation of intermittency from wind 

generation that affects the shape of the weekly residual load duration curve. This 

change of shape and their fewer hours mean that the peak load blocks in the 8-

node model have higher loads than those in the three-node model. 

 
4 This is discussed in a presentation to the 2021 EPOC Winter Workshop by Dr Phil Bishop (see 
https://www.epoc.org.nz/ww2021.html). 
5 More details of JADE can be found on www.epoc.org.nz 
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5.3 Demand response 

A key ingredient in social planning models is modelling how demand responds to 

high prices. DOASA incorporates a load-shedding module that reduces some 

fraction of load at different locations at different price thresholds. This is much more 

detailed in JADE enabling specific demand response features (e.g., from the Tiwai 

point smelter) to be modelled. 

5.4 Risk aversion 

The main risk in a system such as the NZEM is that of a dry winter leading to energy 

shortages. This is the risk that is currently modelled in JADE using nested coherent 

risk measures. The approach to modelling this in SDDP is described in [8]. This is 

implemented in SDDP.jl which is the SDDP package used by JADE. 

It is possible to model other risks in JADE by admitting uncertainty in demand or 

fuel costs which are currently assumed in the current version to be deterministic. 

5.5 Boundary conditions 

DOASA solves a stochastic optimization problem over a fixed time-horizon. It 

requires an end-of-horizon marginal water value surface to be defined. JADE can 

be applied in infinite-horizon discounted mode (a feature available in SDDP.jl). This 

produces a steady-state water value surface for each week of the year assuming 

that future costs are discounted at a given annual rate. These can then be used as 

end-of-horizon water values for a finite-horizon model. 
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Section 6: Illustrative examples of the use of JADE 
 

We use this section to illustrate the approach that we propose for benchmarking 

competition in the wholesale electricity market. First, we present how we have used 

JADE to model a perfectly competitive benchmark, then we will detail the specific 

inputs for of JADE that we have used, and finally we will discuss the results. 

6.1 Methodology 

Given a model such as JADE, how should this be applied? Our approach is as follows: 

(1) We first train JADE in infinite-horizon mode for discount factor 0.925 

(corresponding to an 8.1% discount rate) and a choice of different levels 

of risk aversion. This process gives end-of horizon water values for any 

week of the year. 

(2) Using parameters and starting reservoir levels for 2020, we train JADE 

over a 12-month horizon using the appropriate steady-state water values 

at the end. This gives an optimal water release policy for this period. 

(3) We then simulate the policy from (2) over 89 historical inflow sequences 
at the risk level chosen in (2). 

(4) For each level of risk aversion, the simulation can be compared with 

historical outcomes e.g., reservoir levels, prices, and marginal water 
values. 

 

6.2 Calibration 

There are a large number of inputs that need to be specified for JADE. Each of these 

needs to be calibrated to the conditions in the electricity sector for the period of 

analysis. Our implementation is JADE is calibrated for 2020. 

The EA has posted its DOASA analysis online within the EA EMI site6. We have used 

the EA’s input files as a basis for our calibration of the JADE model. Below we discuss 

the changes and enhancements that we have made. 

Network Representation 

We model New Zealand as a 11-node radial network with inter-regional transfer 

capacities that have been calibrated from observed flows. The nodes that we have 

used are shown in Figure 1.   

 
6 The data are available at 
https://emi.ea.govt.nz/Wholesale/Datasets/_AdditionalInformation/SupportingInformationAndAnalysis/2021/ 

https://protect-au.mimecast.com/s/eDIcCmO5zMu8EZm3SGlntv?domain=emi.ea.govt.nz
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Figure 1: Transmission network (Transpower, 2021) and 11 node JADE approximation 

 

Demand 

As described in Section 5, we are using 8 load blocks. These have been computed 

from the residual load duration curves in the 11 regions that we model. Our 

approach clusters trading periods within each week based on similar national load. 

In Figure 2 we illustrate these loads for the peak block (B1) and an offpeak block 

(B7), for a subset of weeks in the year. 

 
Figure 2: Subset of regional load blocks calibrated to 2020. 



17 
 

Overall, the load blocks ensure that the total GWh each week is the same as the 

sum of the half-hourly data, but there will be some approximation as, for example, 

the load for the peak block is an average of a number of trading periods. 

Spatial correlation is maintained by clustering all regions together, based on 

national net-load. (This may mean, for example, that block B1 may not be the peak 

block for some smaller regions – but this ensures that the national peak load is 

approximated correctly.) 

Steady-state water valuation 

As stated in Section 5, DOASA uses a fixed terminal water value curve, which is a 

function of national storage. JADE can compute this endogenously, through solving 

a discounted infinite-horizon model to produce a steady-state policy. This policy is 

defined for each week of the year by a water-value surface (i.e., a function of the 

vector of reservoir levels). 

This steady-state policy utilises a discount rate for convergence. Experiments have 

been undertaken with 6000 iterations for discount factors 0.95, 0.925 and 0.9, 

corresponding to discount rates of 5.3%, 8.1% and 11.1%, respectively. The 

terminal marginal water value curves are shown in Figure 3, below7. 

 

Figure 3: Projected terminal marginal water values from JADE with discounting. 

As can be seen from these curves, the terminal water value is quite insensitive to 

the discount factor, over the range we have explored. Therefore, all our subsequent 

experiments have been undertaken using the terminal marginal water values 

corresponding to the discount factor 0.925. It should be noted that the flat region 

 
7 The JADE curves are the projections of the JADE water-value surfaces onto a single dimension (national energy 
storage). 
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of the curve is typically linked to the costs of the (likely) marginal thermal 

generators, whereas the left-side is based on the cost and likelihood of load-

shedding. The EA’s curve is higher on the right and lower on the left than the 

marginal water value curves computed from JADE. 

Thermal fuel costs 

2020 thermal fuel costs are taken from the EA DOASA inputs, adjusted to account 

for the different ways that JADE and DOASA account for CO2 prices. 

Beyond 2020, thermal fuel costs are assumed to revert to lower levels in the 

medium term; we base these prices on the 2017 prices, with a carbon price of 

$25/tCO2e. Our choice of $25 reflects what would be a conservative expectations 

of future CO2 prices in 2020. With hindsight, given today’s NZU prices, this estimate 

is probably too low8. This will be reflected in the level of the flat region of the 

marginal water value curves in Figure 3. Observe that the EA marginal water values 

are higher than ours in this part of the curve in Figure 3, reflecting a view that fuel 

costs will remain at 2020 levels in later years. 

 

6.3 Results and Analysis from 2020 
We now present some results of applying the methodology described above to the 

calendar year 2020. Our purpose here is to demonstrate how our software should 

be applied to monitor the performance of the wholesale market rather than to make 

definitive statements about its competitiveness in 2020.  

In step (1) we trained JADE with levels of the risk aversion parameter 𝜆 ∈ {0.0,0.1,0.2}. 

Here 𝜆 = 0.0 corresponds to a risk-neutral policy. As 𝜆 is increased a higher weighting 

is (typically) placed upon the worst-case inflow from the set of training years. 

Terminal marginal water value 

For each level of risk aversion, we train an infinite-horizon model with an annual 

discount factor of 0.925 to create a set of terminal marginal water values for our 

2020 benchmark models. The terminal marginal water values on December 31 for 

each policy are shown in Figure 4. 

 
8 We observe that NZU prices on December 22, 2020 are $68.50/t. 
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Figure 4: Projected terminal marginal water values from JADE with various risk measures. 

We can see that the policies with higher risk aversion have higher marginal water 

values at end-of-horizon energy storage levels less than 2000GWh. Another point 

to note is that for energy storage less than 800GWh there are no more tranches for 

the most risk-averse policy. This is because these points would be rarely visited in 

steady state, given the policy. 

Simulation of policies 

After training JADE on the calendar year 2020 (Step 2) for each risk level, we 

simulate each policy on the 89 historical inflow sequences from 1932 to 2020, all 

starting with a single storage level at the beginning of 2020. Figure 5 shows the 

total energy storage (excluding contingent storage and the additional storage at 

Tekapo in the middle of the year). The light grey lines are the 89 trajectories of 

energy storage. On each plot there are two lines highlighted: in red is the trajectory 

for the polices applied to the 2020 inflow sequence, and in blue is the market energy 

storage trajectory (which is the same for all plots). The black line is the median 

trajectory. 

It is interesting to note that the risk-neutral JADE policy follows the market 

trajectory very closely until week 36, at which point the market trajectory deviates 

towards the 𝜆 = 0.1 trajectory.  
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Figure 5: Storage trajectories for hydro inflows for years 1932-2020. 
Shaded regions are 5th-percentile to 95th-percentile (light blue) and 25th-percentage to 75th-percentile (dark blue). 

The version of JADE we have implemented represents the individual main storage 

reservoirs separately (rather than aggregating). Figure 6 shows the equivalent 

figure to Figure 5, broken down into individual reservoirs. Here storage is measured 

in Mm3 rather than GWh.  

Observe that the historical reservoir levels (blue curves) deviate from the JADE 

levels (red curves) except in the cases of Tekapo and Pukaki, where blue and red 

curves are quite close at least in the risk-neutral case. In the spirit of this 

submission, we are tempted to speculate on the causes of these deviations from 

system optimality, but we have no further evidence to support any of the following 

conjectures: 
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1. Contact Energy (the operators of the Clutha hydro scheme), and Mercury 

Energy (the operators of the Waikato hydro scheme) might have better 

information than JADE has used, resulting in different optimal policies. 

2. As owners of gas plant in the North Island Contact Energy might dispatch 

Clyde and Roxburgh more aggressively than JADE, given the gas shortage in 

2020. Offering hydro generation at low prices to meet contracts or retail load 

would draw down Hawea more than perfectly competitive offers (see Section 

4.3) 

3. The system optimal policies computed by JADE can diversify risk across all 

generation plant. It is possible that JADE is trading risk between Mercury and 

Contact that allows each generator to maintain lower storage in Taupo 

(Mercury) and higher storage in Hawea (Contact). 

 

Figure 6: Storage trajectories for individual reservoirs for years 1932-2020. 
Shaded regions are 5th-percentile to 95th-percentile (light blue) and 25th-percentage to 75th-percentile (dark blue). 

JADE outputs marginal water values from the reservoir levels obtained from each 

simulated trajectory. These are plotted in Figure 7. There are some periods where 

water values are negative; these correspond to events where upper bounds on 
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water flows are exceeded (e.g., flood events)9. These violations are penalized in 

JADE and will lead to negative marginal water values, i.e., extra water incurs a cost. 

For all reservoirs, the marginal water values are higher during the winter for more 

risk-averse policies (which assign low future inflows a higher probability than 

estimated from history). This reverses in the spring of 2020 where the risk averse 

policies result in higher levels of storage (see Figures 5 and 6) thus decreasing the 

marginal water value (as demonstrated by Figure 4). Observe that all marginal 

water values in these simulations are below $95/Mwh. 

Figure 7: 2020 marginal water values. 

JADE enables the user to extract prices for each region, week and load block in a 

simulation. These can be compared with corresponding values computed from 

historical prices at representative nodes in each region. One way of visualizing these 

data is a set of heat maps as shown in Figure 8 that shows weekly time-averaged 

prices in each region for each policy setting, with the prices for AKL and CAN written 

next to the corresponding region. Observe that before week 20, historical prices are 

below the JADE values, but become much higher after week 20. 

 

 
9 In week 6 of this simulation Roxburgh and Clyde were spilling over their limits. 
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Figure  8: Weekly time-weighted average prices by region. 
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Figure 9 shows the weekly time-weighted average prices from JADE for regions AKL 

and CAN, and the corresponding values computed from historical prices at nodes 

OTA2201 and BEN2201. This shows that in weeks 1-19, prices from both JADE and 

the market fluctuate around similar values, with prices in the South Island 

consistently lower in the market from week 6 to week 19. After week 20, prices in 

the market were higher than those for all the JADE policies. 

  

 

Figure 9: 2020 weekly time-weighted average prices comparison. 

We are able to analyse price differences further by comparing prices in the peak 

(B1) and off-peak (B8) load blocks, as well as load blocks B3 and B6; this is shown 

in Figure 10. In each subfigure we are comparing weekly prices in the load block 

from each of the JADE policies simulated for 2020 with the market prices averaged 

over the set of periods corresponding to that load block. The left column shows 

prices for the AKL region, and the right column shows prices for the CAN region. 

For all policies the weekly prices increase as demand increases; this is much more 

pronounced in the market prices. However, for load block B1, all policies have price 

spikes in several weeks over the winter. Interestingly, after week 20 the off-peak 

(B8) market prices correspond quite well to the prices from the competitive 

benchmarks. 

Another observation is that prices for different values of risk aversion are similar, 

but the storage trajectories deviate substantially. A key observation is that although 

with a risk-averse policy, we wish to maintain a higher level of storage, that doesn’t 

require prices to stay high throughout the year – in fact, as we observed above, 

prices reverse towards the end of the year (with prices higher in the risk-neutral 

policy) as the reservoirs begin to fill up. 
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Figure 10: 2020 weekly prices for load blocks B1, B3, B6 and B8. 

Shortage risk 

We can use JADE to simulate forward from any storage level part-way through the 

year. In Figure 11, we demonstrate this feature by simulating from week 27. For 

each of the policies, the black curve follows the 2020 JADE trajectory up to week 
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26, after which we simulate forward using historical inflow sequences from 1932 to 

202010. 

 

 
Figure 11: 2020 weekly stored energy trajectories up to week 26 then projections on 1932-2020 inflows. 

 
10 The national storage level is measured in GWh and does not include the energy content of contingent storage, 
which means that the storage levels in Figure 11 and Figure 12 should be increased by the energy content of 
contingent storage if they are to match Transpower’s risk curves. 
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Figure 12 reproduces the simulation shown in Figure 11 but starting from the 

historical level (shown by the blue trajectory). 

 
Figure 12: Actual 2020 weekly stored energy trajectories up to week 26 then projections on 1932-2020 inflows. 

 

Figure 13 shows the prices for 2020 when simulating three different policies from 

week 26 using 2020 inflows, and historical reservoir levels (as in Figure 12). The 
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prices in off-peak periods match reasonably closely, but prices in peak periods differ 

considerably. We see that in week 33, peak prices (B1) spike higher than in Figure 

10. In fact, prices spike higher than the market in that week with  = 0.2. It is 

possible that these differences are caused by constraints not modelled in JADE. We 

attempt to account for these in Section 7. 

 

 
Figure 13: Simulated prices from week 27 to week 52, with storage matching market storage for 2020 at the end of week 26. 
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Section 7:  HydrovSPD 
 

To assess competition using counterfactual models requires a robust method for 

computing the opportunity value of stored water. This requires some form of 

stochastic equilibrium model. Under assumptions of convexity, completeness and 

perfect competition this can be shown to be equivalent to a stochastic optimization 

model. The previous sections have demonstrated how this can be used to compute 

perfectly competitive marginal water values under different assumptions about 

levels of risk aversion. 

As mentioned above, the outcomes of the New Zealand wholesale electricity market 

can be replicated exactly using the vSPD software maintained by the Electricity 

Authority on the EMI site. This software can be used to simulate the outcomes that 

would result from different energy offers from those made historically. 

The question then remains: how do marginal water values computed using JADE 

translate into perfectly competitive energy offers that are inputs to vSPD? This 

translation is a key ingredient to producing a perfectly competitive dispatch solution 

using vSPD and comparing prices and operating surpluses with historical values. 

The situation would be simple if all hydroelectric generators operated a single plant 

fed by its own reservoir. Then the counterfactual offers to be submitted to vSPD 

would be the plant capacity offered at the current marginal water value. In reality, 

reservoirs typically form part of a river chain where water released from one 

reservoir may flow through several stations, possibly filling reservoirs downstream. 

Furthermore, there are often environmental constraints limiting the releases of 

water at different points on the river chain. In JADE we represent the Clutha 

scheme, the Waitaki scheme and the Waikato scheme as river chains.  

Block dispatch enables operators of river chains some freedom to reallocate water 

after dispatch, but even if a river-chain is block dispatched, the dynamics of river 

flows require some linking of offers in different periods. This linking is implicit in the 

offers submitted by river chains to the system operator. 

The solution adopted by the New Zealand wholesale market to this intertemporal 

linkage is to repeatedly compute and publish provisional dispatch solutions over the 

next 36 hours. This enables generators to revise their energy offers up to gate 

closure as they observe the published outcomes of their previous offers and those 

of their competitors. The sequence of offers made must depend on the marginal 

water value, but also on a lot of other factors. How does one account for these to 

determine if the offers made are close to perfectly competitive? 

Our approach is the model HydrovSPD described in [9]. This is a 48-period version 

of vSPD that incorporates reservoirs and river flows in the Waitaki, Clutha and 

Waikato systems, and links consecutive periods with water transfers between 

station headponds. Inflows are assumed to be constant throughout the day and 

known at the start of the day, and are set to be their daily average levels. 



30 
 

HydrovSPD solves all 48 trading periods in a day in one model. This means that the 

model assumes perfect information of all parameters throughout the day. In other 

words, HydrovSPD is clairvoyant. As a result, the optimizer can guarantee that all 

river-chain constraints are satisfied throughout the day11. 

The results of any counterfactual experiments carried out using HydrovSPD depend 

on a number of assumptions regarding the many inputs to vSPD. We assume that 

these inputs are identical to those used historically except for generation and 

reserve offer prices. Thermal generators offer the same quantities as historical 

offers but offer at their short-run marginal cost (computed from gas and coal costs 

and other variable costs), and hydro generators pay for daily use of reservoir water 

at its risk-adjusted opportunity value computed using JADE. Reserve is offered at 

zero cost but must satisfy the reserve requirements that pertain to the historical 

period. 

There are several ways that HydrovSPD can be used to monitor market outcomes. 

As shown above we can identify weeks in the year where time-averaged prices 

computed using JADE differ from historical values. Week 20 in 2020 is an example. 

HydrovSPD can then be applied to each day in this week to see if the JADE prices 

are low because JADE is missing key constraints that might materially affect prices. 

To illustrate this application, consider Tuesday, May 19, 2020, which is the last day 

in week 20. The cuts that represent the marginal water value (with  = 0.1) at the 

end of this week were input to HydrovSPD, which produces prices at nodes 

BEN2201, HAY2201, and OTA2201 shown in Figure 14. These are compared with 

the historical prices. The prices in the competitive solution peak fluctuate as shown 

driven by the dispatch of the Whirinaki peaking plant. BEN2201 prices remain low 

throughout, so there is substantial price separation between BEN2201 and HAY2201 

in some periods in contrast to the historical solution. 

 
11 The clairvoyance implies that solutions will anticipate future events in the day, so the optimal costs will be 
lower than what can be achieved without this knowledge. Although this gap has been shown to be small in 
historical studies (Porter, N.R., Intra-day uncertainty and efficiency in electricity markets, 
https://www.epoc.org.nz/theses/NickPorterFinalMasters.pdf, 2015) it will become more important as wind and 
solar capacity increases. 

https://www.epoc.org.nz/theses/NickPorterFinalMasters.pdf
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Figure 14: Historical prices from May19, 2020, compared with HydrovSPD prices computed from risk averse cuts 

Although the focus of benchmarks is naturally on the wholesale prices they deliver, 

as these are what consumers pay either directly, or averaged and risk-adjusted 

through contracts or retail prices, HydrovSPD can be used to compare other 

performance indicators.  

The water released by the historical solution and by HydrovSPD will be different and 

so it is important to keep track of this, since savings in HydrovSPD thermal fuel cost 

from releasing more water must be somehow paid for by releasing less later on. 

Although we have not done this yet for 2020, we report in [9] on an experiment 

that applies HydrovSPD to every day in 201712. In this study, HydrovSPD and 

DOASA are alternated. DOASA is run every two weeks with updated reservoir 

storages produced by a sequence of 14 HydrovSPD runs, one for each day of the 

two weeks. This gives 365 consecutive days of dispatch and corresponding storage 

trajectories. 

The detailed outputs from this experiment are presented in [9]. The results show 

similar prices to average historical North Island prices (although there are 

significant differences over time), but lower average South Island Prices than those 

observed historically. The competitive counterfactual model generates more energy 

from the Waitaki system and constrains the HVDC line more often. One can contrast 

the resulting counterfactual prices with historical values as shown in Figure 15 and 

Figure 16.  

 
12 We present these results to illustrate the approach rather than draw conclusions about market performance in 
2017. The improvements in JADE that we describe above might yield different results from DOASA when 
combined with HydrovSPD. 
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Figure 15: Historical time-weighted daily prices at Benmore (purple) compared with counterfactual prices (red).  Historical 

prices are $23/MWh higher on average (reproduced from [9]). 

 

Figure 16: Historical time-weighted daily prices at Otahuhu (purple) compared with counterfactual prices (red) (reproduced 

from [9]). 

Historical HVDC rentals in 2017 computed using vSPD prices were about $4.3M. The 

rentals from the competitive counterfactual model were approximately $20 M. 

The paper [9] also has comparisons of Ricardian rent for historical and perfectly 

competitive counterfactual solutions for 2017, and comparisons of historical and 

counterfactual storage trajectories for 2017. The former can be used to assess to 

what extent a perfectly competitive model results in missing money for generators. 

One might use the latter to assess whether the level of shortage risk in the 

competitive counterfactual model is acceptable. We note that 2017 is one sample 

path so care must be taken in drawing conclusions about risk from such a 
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simulation; the simulations carried out using JADE in Section 7 of this report over 

89 historical years provide a more robust assessment of shortage risk. 
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Section 8:  Discussion 
 

This document has focused on models that we believe should be used to monitor 

outcomes in the New Zealand wholesale electricity market. The purpose of 

monitoring is to identify episodes where market outcomes diverge from perfectly 

competitive ones. These can then be examined in much greater detail to discover 

why this is happening. 

It is important to recognize that the outcomes from counterfactual models depend 

on the assumed inputs. JADE relies heavily on cost estimates to produce the 

marginal water value curves in Figure 3. The flat part of each curve varies in height 

depending on assumptions of thermal fuel costs and CO2 prices. Identifying the 

sensitivity of outcomes to these cost estimates is important. This is discussed to 

some extent in [9], where two different cost estimates are modelled. The 

assumption that natural gas is a readily available resource (at a known price) is 

also open to question in the light of recent gas shortages. It is possible that including 

a gas reservoir model in JADE (that behaves similarly to a hydro reservoir) might 

provide more realistic estimates of the cost of gas for electricity generation. 

The second important assumption is the estimated cost of demand response and 

involuntary load shedding. As the electricity system reduces its dependence on coal 

and gas, demand response costs will play a greater role in determining electricity 

prices, and so some care and attention must be devoted to estimating them. 

Although JADE has the flexibility to include sophisticated demand reduction 

mechanisms, in this submission we have used the same load-shedding costs as the 

EA assumed in their review document. The values chosen for load-shedding costs 

affect the left-hand end of the marginal water value curves in Figure 3 (and to some 

extent the slope of the flatter parts).  One contribution of this submission is showing 

how JADE’s infinite horizon model yields arguably more realistic end-of-horizon 

marginal water value curves (at least at the left-hand end) compared with those 

assumed by DOASA13. 

Some caution is needed in drawing conclusions about the motives of market 

participants from counterfactual models. Exercise of market power is commonly 

blamed for deviations from perfectly competitive outcomes, but other factors might 

have caused these. For example, a generator might be acting to avoid risks that 

she cannot hedge using available market instruments. Having said this, risk-averse 

counterfactual models like JADE can help identify situations where missing markets 

for risk trading might have contributed to this difference. 

HydrovSPD shows that there are significant deviations between a clairvoyant central 

plan for daily dispatch and the current market solution. The outcomes of the 

repeated pre-dispatch discovery process can result in productive inefficiencies as 

reported in [9]. These can arise from generators attempting to meet inter-temporal 

 
13 Recall that DOASA assumes an exogeneous end-of-horizon marginal water value curve, whereas this is 
computed in JADE by training on an infinite horizon. 
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constraints by altering offer prices. In many other wholesale electricity markets 

intertemporal constraints (such as ramping constraints on large thermal units) are 

handled with two-settlement markets, a day-ahead market and a balancing market. 

Perhaps this is worth considering for river chain optimization. 
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Abstract

Using a suite of empirical models we study the effects of risk aversion on
wholesale electricity prices that are affected by uncertainty in hydroelectric
reservoir inflows. Our models combine stochastic dual dynamic program-
ming with a high fidelity simulation model of the New Zealand wholesale
electricity market. Results of the models are given for the calendar year
2017, and compared with wholesale market outcomes in that year.
Keywords: electricity market, hydroelectricity, stochastic inflows, risk-

aversion, market power.

1 Introduction

In this paper we revisit an earlier study by the same authors [27] that investi-
gated the effects of uncertainty on outcomes in wholesale electricity markets that
are dominated by hydroelectric generation. The paper [27] applied risk-averse
stochastic optimization models to a counterfactual model of the New Zealand
wholesale market over the calendar year 2012. The current study incorporates a
more sophisticated long-term model, and like the previous study links this with
fully detailed model of the New Zealand dispatch model, improved to represent
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the national instantaneous reserve market that came into force in late 2016. The
current study is confined to 2017; we leave detailed analysis of other years to a
forthcoming companion paper [28] that presents the results of applying our model
to data from the ten historical years 2008-2017.
The perfectly competitive benchmarks that we compute are the result of sim-

ulating a system optimal policy. If electricity market participants maximize pro-
ductive and allocative effi ciency, then they will maximize social welfare for the
system as a whole, at least in the short term. It is worthwhile to discuss this
assertion in the context of the New Zealand wholesale electricity market consist-
ing of five large gentailers who compete to supply electricity to consumers in an
energy-only market.
We begin with an account of the classical theory of energy-only markets (see

e.g. [33]). In a single-period setting with no uncertainty and convex costs the
locational marginal prices emerging from an economic dispatch in which all energy
is offered at its short-run marginal cost will correspond to a perfectly competitive
partial equilibrium. If demand is elastic in the short term then in equilibrium
these prices will be suffi cient to sustain the optimal level of generation capacity.
If demand is inelastic then some form of involuntary load curtailment is needed
if capacity is insuffi cient. In theory this occurs at a value of lost load (VOLL)
which is determined by the annual acceptable frequency of load curtailment. If
prices go to VOLL enough then the rents earned by generators are theoretically
enough to cover their fixed costs on average.
The high values of VOLL needed in order to have low shortage probabilities

are not always acceptable to regulators, and so many jurisdictions impose lower
price caps. To ensure that shortages do not become more frequent from under-
investment, they institute other mechanisms (capacity markets) to remunerate
generators for their fixed and capital costs, which would otherwise be “missing
money”. By contrast, in an energy-only market, it is theoretically possible to pro-
duce a competitive equilibrium without any missing money by requiring offers at
short-run marginal cost and either paying VOLL during shortages or introducing
some elasticity in demand using operating reserve margins (see [13]).
There are a number of factors that serve to complicate this simple theory:

1. Indivisible decisions (e.g. from unit commitment) destroy convexity in the
economic dispatch problem and so true locational marginal prices are un-
available, and must be approximated. Because New Zealand has very few
large thermal plants this is not a major effect. The economic dispatch
model “Scheduling Pricing and Dispatch”(SPD) used by the system opera-
tor is essentially a linear program, so locational marginal prices are readily
obtained from dual variables.

2. Markets are incomplete, meaning that some instruments are not priced in

2



the market. The classic case occurs when agents compete for transmission
assets in the absence of a system operator. Suppose South Island generators
could specify some fraction of the HVDC line that they wished to use. Then
in competition there are many potential equilbria, in which they end up
sharing the line in different proportions. To ensure the optimal proportions
requires a single price on the transmission asset, i.e. the difference in nodal
prices delivered by the optimal solution of SPD.

A less obvious incompleteness arises from the transfer of water between Lake
Tekapo and Lake Pukaki, releases from which are controlled by different
companies (Meridian and Genesis). This form of market incompleteness was
first identified in the paper by Lino et al. [15], who demonstrated this using a
computational example based in Brazil. If all agents are located on different
river systems then a centrally planned solution gives rise to system marginal
prices that will clear the market with an optimal dispatch if each agent
optimizes its own objective using these prices, but ineffi ciency can result
in equilibrium from different agents operating hydro stations on the same
cascaded river system. The same issue of different agents sharing a common
resource is explored in [9] in their treatment of competitive equilibrium.
They show that a market instrument pricing the transfer of water between
generating stations is required in order for a market equilibrium to yield
the economically effi cient solution1. We shall return to this issue in the
discussion of our results.

3. Uncertainty affects equilibrium in several ways. In theory, under very spe-
cial circumstances it is possible for a Walrasian equilibrium to give a sto-
chastic process of prices with respect to which every agent optimizes its
own expected benefit (revenue minus variable cost) with the outcome of
maximizing total expected welfare. However, as shown by the examples in
[4], the stochastic process of prices that yields an equilibrium might be very
complicated with none of the stagewise independence properties that make
computing optimal policies relatively easy for generators.

In practice, price formation is more complex. In the short term, the New
Zealand system operator provides forecast prices by solving SPD sequen-
tially over future trading periods. Astute generators should not base their
dispatch plans entirely on this forecast, but should account for random vari-
ation in the price process. How this is done in practice varies, since agents

1In New Zealand, Genesis and Meridian operate different generating stations on the Waitaki
system. Our counterfactual models assume that the generation of these stations is coordinated
by contractual arrangements so that they yield the collective benefits that would be delivered
by one (perfectly competitive) owner.
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have different views of the future. In principle, a market equilibrium deliv-
ers prices that integrate these views by matching supply and demand from
agents who base commercial decisions on their beliefs. We will assume in
this paper, however, that market participants’beliefs about the probability
distribution of future demand are the same, and do not change in response
to market interactions. (This common view could emerge, for example, from
them using the same data and models.) When agents maximize expected
benefits this yields an equilibrium stochastic process for prices that can be
computed from a social planning model.

Longer-term uncertainty in the New Zealand setting is dominated by so-
called “dry-year risk”that occurs when inflows into the hydro lakes are lower
than expected, risking an energy shortage. The risks of such a shortage
are communicated to the market via an expected marginal water value
that is assigned by hydro generators to reflect their opportunity cost of
releasing water now for electricity dispatch. This opportunity cost can be
estimated from historical price data, or computed under an assumption of
perfect competition by solving a large-scale stochastic dynamic program
that minimizes expected social cost.

4. Risk aversion changes generators’ views of occasional high payoffs. The
classical model for risk aversion [10] uses concave utility functions that
are applied to random payoffs before taking expectations, so high payoffs
are discounted at the margin compared with low payoffs. If agents are
risk averse then occasional high payoffs from infrequent shortages might
be insuffi cient to cover the fixed costs of peaking generators that are only
dispatched as these episodes are approached. Some of this risk can be
traded through derivative contracts such as the swaption contract between
Genesis and Meridian that contributes to Huntly’s fixed costs when water
is plentiful and thermal plant are not dispatched.

5. Perfectly competitive actions of risk-averse agents might not yield a social
optimum if risks cannot be traded. Agents in such an equilibrium (if it
exists) will estimate marginal water values based on their risk-adjusted view
of the future, and their actions in aggregate will yield equilibrium prices that
are then used to form these views. Determining these prices for a multistage
equilibrium would be very diffi cult. Furthermore, if we were to seek an
equivalent socially optimal plan then it is necessary to integrate individual
risk measures into a system risk measure to be optimized. As identified by
Newbery and Stiglitz [19] this is not possible for general nonlinear utility
functions.

As can be seen from the above discussion uncertainty and risk make it diffi cult
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to equate social welfare maximization with competitive equilibrium. However all
is not lost. In the last twenty years a “modern theory of risk”has emerged from
the theory of finance, based around the concept of convex risk measures and their
subclass coherent risk measures [2]. Coherent risk measures have very attractive
properties for optimization. Unlike most utility functions, coherent risk measures
have a translation equivariant property, which means that they can be expressed
in nested form, a useful property for stochastic dynamic programming models.
This property is exploited in a series of papers [22], [23], [8] that implement nested
dynamic coherent risk measures in the SDDP algorithm [21].
Coherent risk measures also give a principled methodology for connecting the

optimization of social welfare and competitive equilbrium in a dynamic setting.
The two welfare theorems we require are proved in [9] under the assumption that
perfectly competitive agents solve risk averse convex optimization problems using
(possibly) different coherent risk measures that are reasonably similar (in a sense
made precise in the paper), and agents are able to trade risk with each other
through a complete market of contingent securities. Under these circumstances,
the risk measures of the agents can be integrated into a social risk measure.
Essentially the agents swap risky payoffs with each other to remove individual
risks until they all agree on what are the worst scenarios, the risk of which cannot
be removed. The social planner’s solution then optimizes using this risk measure,
so it tries to protect agents against these bad scenarios. The welfare theorems
(precisely stated in [9]) are paraphrased as follows:

Theorem 1 Given an integrated social risk measure, the optimal risk-averse so-
cial plan gives a set of actions for each agent and shadow prices, so that each
agent’s actions optimize their own risk-adjusted operating surplus at these prices
after trading risk with other agents, and the prices clear the markets for energy
and risk (i.e. there is a Walrasian partial equilibrium).

Theorem 2 Suppose for some stochastic process of prices that each agent’s ac-
tions optimize their own risk-adjusted operating surpluses at these prices after
trading risk with other agents. If prices for enery and risk clear these respective
markets (i.e. there is a Walrasian partial equilibrium) then the actions of all the
agents yield an optimal risk-averse social plan for the integrated risk measure.

These theorems form the foundation for our computational study. Using
DOASA (the implementation of SDDP developed by researchers at the Elec-
tric Power Optimization Centre as described in [25]) we solve a risk-averse social
planning problem using nested coherent risk measures with different levels of risk
aversion. According to the theorems above, this risk measure can be interpreted
as an integrated risk measure corresponding to electricity market participants who
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can trade risk in a complete market of derivative instruments. In this setting the
dispatch solution and prices we compute will maximize the risk-adjusted rents
of each agent (accounting for returns from risk derivative trading) in a perfectly
competitive Walrasian equilibrium.
The assumption of complete markets for risk is arguably unrealistic as it re-

quires that every possible random payoff can be replicated by some portfolio
of traded instruments. In practice, however, it is often enough for them to be
almost complete. For example, Walrasian partial equilibria in markets with liq-
uidity in contracts for differences appear to be close to socially optimal [14]. So,
although we cannot expect such complete markets in practice, we claim that the
formulation and solution of risk-averse centrally planned hydrothermal models in
our work provides a compelling competitive equilibrium benchmark of the New
Zealand wholesale electricity market.
The layout of the paper is as follows. In the next section we describe the

physical and institutional details of the New Zealand wholesale electricity market.
We then outline the features of the suite of stochastic optimization models that
we use in our study. The details of the models and the data that they use
are provided in an online companion [12]. In section 4 we apply the models to
every trading period in 2017, and compare results between models under different
assumptions on participants’levels of risk aversion. The final section draws some
conclusions.

2 The wholesale electricity market

Since 2004, New Zealand has operated a compulsory pool market, in which the
grid owner Transpower plays the role of System Operator (SO). In this market
all generated and consumed electricity is traded2. Unlike most electricity mar-
kets in other parts of the world, the NZEM has no day-ahead power exchange.
Bilateral and other hedge arrangements are still possible, but function as sepa-
rate financial contracts. Trading develops by bids (purchaser/demand) and offers
(generator/supply) for 48 half hour periods (called trading periods) over several
hundred pricing nodes on the national grid. (Although demand side bids are
included in the offi cial description of the SO dispatch model, there is currently
very little demand-side bidding in the NZEM, so we will omit them from further
discussion.)
The offers of generation made by generators to the SO take the form of offer

stacks. These are piecewise-constant functions defining the amount of power

2Small generating stations with capacity of 10 MW or less are not required to make offers.
From 1996-2004 a voluntary wholesale market existed, where approximately 80% of electricity
was traded; the remaining 20% by bilateral contracts.
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Figure 1: Generic network model illustrating notation

offered at up to five different prices that may be chosen by the generator m. We
can represent the offer stack for generator m by the (step) function Cm(x), where
x is the amount offered in MW. In the New Zealand market the generator offer
functions Cm are not publicly known at the time of dispatch, but are published
the following day. These data are made available as part of the Electricity Market
Information (EMI) system supported by the New Zealand Electricity Authority
[16].
All the prices in the wholesale electricity market in New Zealand are com-

puted by the SO using a linear programming model called “Scheduling, Pricing,
and Dispatch”or SPD. This represents the New Zealand transmission network
by a DC-load flow model. The full version of SPD includes constraints that
ensure voltage support, N − 1 security for line failures, and meet requirements
for spinning reserve that are dispatched at the same time (see [1]). The New
Zealand Electricity Authority supports a publicly available GAMS model called
vSPD [18]. The EMI system archives historical input files that when run on the
model will reproduce historical prices and dispatch exactly. This enables very
precise historical simulations to be run using counterfactual assumptions.
The essential features of SPD can be described mathematically using a DC-

Load flow model formulated in the generic network model shown in Figure 1. For
each node i the set O(i) defines all the generators at node i, where generator m
can supply any quantity qm ∈ Qm. The demand at node i is denoted Di. This
gives the following market dispatch model:

MP1: minimize
∑

i

∑
m∈O(i)

∫ qm
0

Cm(x)dx

s.t. gi(y) +
∑

m∈O(i) qm = Di, [πi] i ∈ N ,
qm ∈ Qm, m ∈ O(i), i ∈ N ,
y ∈ Y.

At the optimal solution to MP1, the shadow price πi on the flow balance
constraint at node i defines the locational marginal price. This is the price at
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which energy is traded at this location. The components of the vector y measure
the flow of power in each transmission line. We denote the flow in the directed
line from i to k by yik, where by convention we assume i < k. (A negative value
of yik denotes flow in the direction from k to i.) We require that this vector lies in
the convex set Y , which means that each component satisfies the thermal limits
on each line, and satisfies loop flow constraints that are required by Kirchhoff’s
Law. The function gi(y) defines the amount of power arriving at node i for a
given choice of y. This notation enables different loss functions to be modelled.
For example, if there are no line losses then we obtain

gi(y) =
∑
k<i

yki −
∑
k>i

yik.

With quadratic losses we obtain

gi(y) =
∑
k<i

yki −
∑
k>i

yik −
∑
k<i

1

2
rkiy

2
ki −

∑
k>i

1

2
riky

2
ik,

where yik measures the average flow in the line from node i to node k. In SPD
the quadratic losses are modelled as piecewise linear functions of arc flow which
enables MP1 to be solved as a linear program (at least when losses are minimized
by the optimal solution).
Bids and offers start 36 hours before the actual trading period. Up to 4 hours

(pre-dispatch) before the trading period starts, a forecast price is calculated to
guide participants in the market. From 4 hours to the start of the trading period
every half hour a dispatch price is calculated (and communicated). Two hours
before the start of the trading period, bids and offers for the period in question are
locked in. From that point onwards any new prices reflect the SO’s adjustments
in load forecasts and system availability.
During the half hour period the SO publishes a new real-time price every 5

minutes and a time-weighted 30-minute average price. The real-time prices are
used by some large direct-connect consumers to adapt their demand. The above
prices are a guide only, as the final prices are calculated ex-post (normally noon
the following day, unless there are irregularities or disputes) using the offer prices
as established 2 hours before the trading period, and volumes metered during the
trading period.
As mentioned above SPD (and vSPD) include constraints that ensure voltage

support, N − 1 security for line failures, and meet requirements for spinning
reserve that are dispatched at the same time as energy offers. We assume that
voltage support and security constraints are relatively unaffected by the dispatch,
and so in any simulation of a historical trading period we assume the constraints
that applied at the time.
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Spinning reserve does depend on the dispatch, and can have a large effect on
prices, so we attempt to account for this in our counterfactual models. Spinning
reserve protects the system from a frequency collapse if a large thermal unit or
transmission line fails. At the beginning of every run the system operator takes
the current dispatch and runs an AC simulation (called Reserve Management
Tool or RMT) to estimate the levels of fast response (6-second) and sustained
response (60-second) spinning reserve that would be required should a large unit
(or the inter-island HVDC link) fail. The outputs of RMT are levels of freely
available reserve and automatic load shedding, and the level of extra reserve that
must be supplied by market participants in each island, who offer quantities of
reserve to the market at prices of their own choosing. Details can be found in [1].

3 The models

Our study makes use of a similar suite of models as defined in [29]. The major
difference in comparison with previous work is that we now use a full representa-
tion of the New Zealand high voltage transmission sytem as represented by vSPD.
The models we use are:

vSPD: Dispatch model solved over one trading period;
HydrovSPD: Daily dispatch model including river chains;
DOASA: A stochastic planning model solved over one year;

We examine a counterfactual proposal that supposes that the national elec-
tricity system is controlled centrally by a system planner who solves DOASA
every two weeks in a rolling horizon fashion with updated data. The output
from DOASA is used to determine water values for the model HydrovSPD that is
solved sequentially over 14 days between solves of DOASA. The outcomes of the
model HydrovSPD are then compared with observed outcomes in the wholesale
market as computed in vSPD. The details of this process are defined in publica-
tions that can be downloaded from the online companion [12]. We digress only
briefly here to give an overview of the process.

3.1 HydrovSPD

To investigate the dispatch of hydroelectricity over the course of a day, a national
river-chain dispatch and nodal pricing model (HydrovSPD) combines offers from
generation plant with river scheduling constraints over 48 half-hour trading pe-
riods, p = 1, 2, ..., 48. A diagram of the location of the river chains modelled is
shown in Figure 2.

9



Figure 2: Approximate network representation of New Zealand electricity network
showing main hydro-electricity generators

HydrovSPD is based on a model developed by Nicholas Porter in a Masters
thesis [32]. In the model we discriminate between thermal generation fm, m ∈
F(i) ⊆ O(i), and hydro generation γmhm, m ∈ H(i) ⊆ O(i). The parameter γm,
which varies by generating station m, converts flows of water hm(p) into electric
power. We denote the set of trading periods by P = {1, 2, . . . , 48}3, and add the
argument p to all variables.
The storage in a reservoir or headpond r is denoted by xr. The initial storage

at the start of period p = 1 is given by the vector x̄. The water balance constraints
in each period are represented by

xr(p+ 1) = xr(p)− Arm(hm(p) + sm(p)) + ωr(p),

where xr(p) is the storage in reservoir r at the start of period p, sm(p) denotes the
spill from above station m in period p, and ωr(p) is the uncontrolled inflow into
the reservoir in period p. All these are subject to capacity constraints. (In some
cases we also have minimum flow constraints that are imposed by environmental

3P can have 46 or 50 trading periods on days in which daylight saving changes.
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resource consents.) The node-arc incidence matrixA represents all the river-valley
networks, and subtracts controlled flows that enter a reservoir from upstream from
those that leave a reservoir by spilling or generating electricity. In other words
row r of A(h(p) + s(p)) gives the total controlled flow out of the reservoir (or
river junction) represented by row r, this being the release and spill of reservoir
r minus the sum of any immediately upstream releases and spill.
We differentiate between large storage reservoirs r ∈ R and small headponds

r ∈ S. We require small headponds to start and end the day 50% full, while
the marginal value of water in the large storage reservoirs is calculated using a
piecewise linear convex cost-to-go function θ(x), defined by cutting planes

θ(x) = max
k∈K
{αk +

∑
r∈R

βkrxr(49)}.

Here the values of αk and βkr are determined from the output of a longer term
model. If at some x we have θ(x) = α` +

∑
r∈R β

`
rxr(49) then −β`r defines the

marginal value of water in reservoir r at the end of the day. Marginal water
values defined by these cutting planes will, after being adjusted by γ, define the
counterfactual energy prices πi(p) determined for each trading period and location
by solving HydrovSPD(x̄). This is formulated as:

min
∑

p∈P
∑

i∈N
∑

m∈F(i) φmfm(p) + θ

s.t. gi(y(p)) +
∑

m∈F(i) fm(p) +
∑

m∈H(i) γmhm(p) = Di(p), [πi(p)]

i ∈ N , p ∈ P,
vSPD constraints: e.g. security, spinning reserve,
voltage support, loop flow, ramping

0 ≤ fm(p) ≤ am, m ∈ F(i), i ∈ N , p ∈ P,

xr(p+ 1) = xr(p)− Arm(hm(p) + sm(p)) + ωr(p), r ∈ R ∪ S, p ∈ P,

0 ≤ hm(p) ≤ bm, 0 ≤ sm(p) ≤ cm, m ∈ H(i), p ∈ P,

0 ≤ xr(p) ≤ wr, r ∈ R ∪ S, p ∈ P ,

αk +
∑

r∈R β
k
rxr(49) ≤ θ, k ∈ K,

xr(49) ≥ 0.5wr(1), r ∈ S, xr(1) = x̄r, r ∈ R ∪ S.

Observe that we include spinning reserve offers and constraints in HydrovSPD.
A diffi culty here is that we do not have access to the approriate reserve parameters
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(from RMT) for the counterfactual models, so we simply choose reserve require-
ments to be the same as historical levels, and make the same historical reserve
offers in HydrovSPD at zero cost.

3.2 The medium-term hydro model: DOASA

To investigate the dispatch of hydroelectricity over the course of a year, a hydro-
thermal release policy must be determined. This involves the solution of a large-
scale stochastic dynamic programming model which is defined as follows. Let x (t)
denote the reservoir storage at the beginning of week t, and let Ct(x, ω) be the
minimum expected fuel cost to meet electricity demand in weeks t, t + 1, . . . , T ,
when reservoir storage x(t) = x, week t’s inflow is known to be ω. Here Ct(x, ω)
is the optimal solution value of the mathematical program:

Pt(x, ω): min
∑

i∈N
∑

m∈F(i) φmfm(t) + Eη[Ct+1(x(t+ 1), η)]

s.t. gi(y(t)) +
∑

m∈F(i) fm(t) +
∑

m∈H(i) γmhm(t) = Di(t), i ∈ N ,

x(t+ 1) = x− A(h(t) + s(t)) + ω,

0 ≤ fm(t) ≤ am, m ∈ F(i), i ∈ N ,

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i),

0 ≤ xr(t) ≤ wr, r ∈ R,

y ∈ Y ,

where η represents the random inflow in week t + 1. To solve Pt, we use the
DOASA code [25] which is based on the SDDP technique of Pereira and Pinto
[21]. This approximates Eη[Ct+1(x(t+ 1), η)] using a polyhedral function defined
by cutting planes that is updated using samples of the inflow process. Since each
week t has its own distribution of inflows we will henceforth denote this random
variable ω(t), so Eη[Ct+1(x(t+ 1), η)] = E[Ct+1(x(t+ 1), ω(t+ 1))].
The DOASA model uses weekly stages. A calendar year is divided into 52

weeks. A plan year is typically a year of 52 weeks with the starting week chosen
to be a particular week in the calendar year. Historical inflows are sampled from
a file that records weekly inflows as described below. The New Zealand electricity
system is represented as shown in Figure 3.
Weekly demand is represented by a load duration curve with three blocks.

These are called peak, off-peak and shoulder. We have chosen peak hours to
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Figure 3: The 3 node transmission network and major generators in DOASA.

be 6am-8am and 6pm-8pm weekdays, shoulder hours to be 8am-6pm and 8pm-
10pm weekdays, and offpeak hours to be the other hours in the week. The total
demand in MW in each node i is then averaged over these trading periods to get
a total demand rate Di(b, t) for each block. The energy requirement in node i for
each block b in week t will be its duration T (b, t) times the average demand rate
Di(b, t) for this block.
The choice of what data to include in demand is a delicate matter. Publicly

available demand figures (e.g. those in the EMI Data Set [16] ) make various
assumptions about what embedded generation and demand is included. These
must be carefully studied to ensure that demand is not overlooked or double
counted. The DOASA model aggregates demand to three locations (SI, HAY,
NI) representing the South Island, the lower North Island, and the upper North
Island, and allows transfers between these regions limited by line capacities. This
means that aggregating demand in each region will ignore the intra-regional losses,
implying that the regional totals of historical demand will underestimate the true
demand to be met by generation and net imports to SI, HAY, and NI. So some
inflation of total demand is needed in DOASA to account for these losses. If
the aggregation is carried out geographically then ignoring line losses might also
bias the generation mix in the dispatch towards geographically close (yet possibly
electrically distant) plant.
The aggregation (into regions SI, HAY, and NI) of historical dispatch of the

large generators can be used as a proxy for the demand adjusted for losses. We
ignore the generation supplied by small generators as long as demand is adjusted
for this, and compute the total generation of large generators in each region (SI,
HAY, and NI) in each trading period using vSPD, and then add the net import
minus export of power through transmission lines joining the region to its adjacent
regions. The result will give the half-hourly demand in the region satisfied by
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large generators and transfers between the regions. This is then transformed into
load blocks for each week and used as the demand to be met by large generators.
Of course this means that small fixed generators should have their generation
fixed at zero in the DOASA input data (as demand has effectively been reduced
by these values).
A precise description of the demand calculation is as follows. Index all the

generators represented in DOASA by g ∈ G. Denote the regions (SI, HAY, and
NI) by indices S, H and N . The first step in computing demand is to deter-
mine what vSPD nodes lie in each region. The boundaries of these regions can
be defined somewhat arbitrarily, although Cook Strait is one obvious boundary
between HAY and SI.
Let NS, NH , and NN define the vSPD nodes corresponding to each region.

Based on the transmission lines in vSPD, we define four sets of transmission
variables

LSH = {transmission lines directed from a node in NS to a node in NH}
LHS = {transmission lines directed from a node in NH to a node in NS}
LHN = {transmission lines directed from a node in NH to a node in NN}
LNH = {transmission lines directed from a node in NN to a node in NH}.

The generators g ∈ O(i) in each region i ∈ {S,H,N} are treated as if they
are in a single location. We compute the total generation in each region in each
trading period in each day of the plan year, by running vSPD with the GDX file
for the trading peiods in that day. This gives us 365 days, each containing 48
periods (except for leap years and daylight savings days.). Consider a particular
period p on a specific day in the plan year. The DOASA demand for this period
is estimated as follows.
For each generator g let

qg(p) = generation in MWh returned by vSPD using historical data for period p

and

fl(p) = the line flow variable (MWh) for line l as computed by vSPD for period p.

Here fl(p) does not include the losses incurred, half at each endpoint of the line.
For these we define the flow leaving the node at the start of the line to be f+l (p)
and the flow arriving at the end of the line to be f−l (p). Irrespective of the sign
of fl(p) it follows that

f+l (p) = fl(p) +
α

2
(flow loss)

f−l (p) = fl(p)−
α

2
(flow loss),
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where we choose α = 0 for a model with lossless flow and α = 1 to represent
losses. Then we compute the total generation in a region i to be

qi(p) =
∑
g∈O(i)

qg(p).

Now adding flows we get

fSH(p) =
∑
l∈LSH

f+l (p)−
∑
l∈LHS

f−l (p)

fHS(p) =
∑
l∈LHS

f+l (p)−
∑
l∈LSH

f−l (p)

fHN(p) =
∑
l∈LHN

f+l (p)−
∑
l∈LNH

f−l (p)

fNH(p) =
∑
l∈LNH

f+l (p)−
∑
l∈LHN

f−l (p).

Observe that

fSH(p) + fHS(p) + fHN(p) + fNH(p)

=
∑

l∈LSH∪LHS∪LHN∪LNH

(
f+l (p)− f−l (p)

)
= α

∑
l∈LSH∪LHS∪LHN∪LNH

flow loss.

The regional demand in period p is now estimated for each region to be

dS(p) = qS(p)− fSH(p)

dH(p) = qH(p)− fHS(p)− fHN(p)

dN(p) = qN(p)− fNH(p).

Observe that with this definition, the national demand in period p is∑
k∈{S,H,N}

dk(p) =
∑

k∈{S,H,N}

qk(p)− fSH(p)− fHS(p)− fHN(p)− fNH(p)

=
∑

k∈{S,H,N}

qk(p)− α (total flow loss from inter-regional flow) .

The rationale behind this choice is that our backtest is intended to compute
an optimal dispatch to meet some observed demand. The demand used in vSPD
makes various assumptions about embedded generation and wind that are often
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diffi cult to verify, especially for past years. One approach is to backtest the
allocation of generation amongst the large generators. If transmission losses are
ignored in DOASA (the default) then we choose α = 0 in the above analysis
which yields national demand in period p equal to

∑
k∈{S,H,N} qk(p). DOASA will

possibly reallocate generation amongst the generators to be cheaper to meet this
demand. This might give different transfers between regions than those observed
in vSPD.
If transmission losses between regions are modelled in DOASA then we choose

α = 1, which yields national demand in period p equal to
∑

k∈{S,H,N} qk(p) minus
national losses. Now DOASA will possibly reallocate generation to be cheaper
to meet this demand. This might give different transfers between regions than
those observed in vSPD, to not only allow cheaper generation but potentially give
lower transmsission losses. Once dk(p) has been computed for the three regions
for every trading period, we take

∑
k∈{S,H,N} dk(p) for each p in this week, and

allocate the demand to one of three blocks: peak, shoulder, and offpeak. The
assignment of trading period to block is made a priori and fixed. Thus computing
the energy (MWh) in each block in each week is obtained by summing dk(p) over
periods p corresponding to the block.
In meeting demand, in case of supply shortages, load shedding (in MW) is

allowed at high costs. The costs depend on the type of customers and amount of
reduction (in $/MWh). Load in each node is divided into three sectors to repre-
sent different types of customers, which are industrial, commercial and residential,
and each sector has some distribution in each island. The default proportions are
the proportions of consumption in 2015 adjusted to higher commercial and res-
idential proportions in the North Island due to a denser population, and to a
higher industrial proportion in the South Island due to an aluminium smelter.
Each sector is then divided into three segments of load reduction. We assume the
first 5% of load reduction can be made at a modest cost, while the next 5% of
load reduction incurs a higher price, and the remaining 90% represents unplanned
interruption of power supply at VOLL. The VOLL values for the industrial sec-
tor are set to be lower than the other two and the VOLL values increase over
segments in each sector. We assume that up to 10% reduction in load can be
achieved at a relatively low cost, but the value of unplanned interruption is very
high ($10,000/MWh)4.
The DOASA model assumes that six reservoirs, Manapouri, Hawea, Ohau,

Pukaki, Tekapo and Taupo, can store water from week to week. The release of

4The value of $10000/MWh is open to some debate. The NEM in Australia applies a VOLL
that is indexed to inflation. In 2018-19 the value was $14,500 [34]. Our choice of $10,000 is
based on the capital cost of approximately $1m/MW for peaking plant [20] that would be
required 5 hours per year over 20 years.
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this water through generating stations is controlled5. The hydroelectric stations
in other parts of the system are treated as run-of-river plant with limited intra-
week flexibility.
Each DOASA model we solve has 52 weekly stages. We specify a cost-to-go

function for the end of week 52, based on price levels and total storage observed
in historical years at this time of the year. This assumption places a caveat
on the prices we compute in our counterfactual simulations. A more principled
(though computationally intensive) approach would be to compute steady-state
water values using an infinite horizon version of DOASA. It is important also to
note that we assume inflows to the main catchments are stagewise independent.
These are sampled from the historical weekly inflow series available on the EMI
site [16]6. Full details of the DOASA model for this study can be found in the
online companion [12] to this paper.
The solution to P1(x1, ω(1)) defines a set of thermal plants to run and a set of

linear functions (or cuts) whose pointwise maximum approximates E[C2(x(2), ω(2))].
Indeed the DOASA code yields an outer approximation to E[Ct+1(x(t+ 1), ω(t+
1))] at each stage t, and so this defines a policy for any day d at this stage by
setting x̄ = x(t) and solving HydrovSPD(x̄, d) (i.e. HydrovSPD using initial
reservoir storage x̄ and data from day d) in which the constraints

αk +
∑
r∈R

βkrxr(49) ≤ θ, k ∈ K,

at the end of the last trading period in day d are determined by the cuts defining
E[Ct+1(x(t + 1), ω(t + 1))]. In our experimental setup we use the cuts defin-
ing E[C2(x(2), ω(2))] to define the final cost function on each day d that we
run HydrovSPD(x̄r, d) in the first week of the fortnight. For the second set of
seven runs of HydrovSPD(x̄r, d), we use the cuts defining E[C3(x(3), ω(3))]. Then
DOASA is re-solved using the storage at the end of the fortnight. Each DOASA
solve computes 1000 cuts. In summary the experimental procedure is as follows:
Given reservoir levels x(1) solve a 52-week hydrothermal scheduling problem

using DOASA.

1. Set t = 1.

2. Solve a hydrothermal scheduling problem over weeks {t, . . . t + 51} using
DOASA.

5Because of complicated environmental restrictions, we treat Lake Manapouri differently
from other storage lakes. See section 4.

6In any year y we select inflows for each catchment in the years from y − 35 to y − 1 as
equally likely random outcomes in each week. Thus for any year we have 35 (vector) outcomes
per stage giving a stagewise independent scenario tree for DOASA of 3551 scenarios.
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3. Set x̄ = x(t).

4. For d = 1 to 7,

(a) Select αk and βk, k ∈ K, from the cut intercepts and slopes approxi-
mating Eω[Ct+1(x(t+ 1), ω(t+ 1))];

(b) Solve HydrovSPD(x̄, d);

(c) Set x̄ = xr(49).

5. For d = 8 to 14,

(a) Select αk and βk, k ∈ K, from the cut intercepts and slopes approxi-
mating E[Ct+2(x(t+ 2), ω(t+ 2))];

(b) Solve HydrovSPD(x̄, d);

(c) Set x̄ = xr(49).

6. Set reservoir levels to x̄, set t = t+ 2, and go to step 2.

DOASA also allows us to compute risk-averse policies with varying levels of
risk aversion. Risk is modelled using a nested dynamic risk measure (see [22]), in
which the one-step risk measure is a convex combination of the expectation and
worst-case outcome of future fuel and shortage cost. In other words we use the
one-step risk measure

ρ(Z) = (1− λ)E[Z] + λW[Z]

where λ ∈ [0, 1), Z represents the random future cost, and

W[Z] = max{Z(ω)}.

The dynamic version uses a nested form of ρ, where the risk averse certainty
equivalent of a random stream of costs, say Z1, Z2, Z3, is computed using a nested
formulation, which would be ρ(Z1 + ρ(Z2 + ρ(Z3))) in this example. A straight-
forward procedure for implementing this within SDDP algorithms is described in
[23]. If there areM scenarios, the measure ρ(Z) is equivalent to weighting all sce-
narios with equal probability (1−λ)

M
except for the most expensive scenario which

receives weight 1
M

(Mλ− λ+ 1). In our experiments we compare a risk-neutral
policy (λ = 0) with a mildly risk averse policy (λ = 0.1) and a highly risk-averse
policy (λ = 0.3). A value of λ = 0.1 implies that the decision maker each week
believes with probability 0.1 that the worst inflow observed in this week in the
last 35 years will occur, which is about four times more likely than the model
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with λ = 0.0. A value of λ = 0.3 makes this worst-case inflow about 11 times
more likely than the risk-neutral probability.
The DOASA model also assumes that inflows are stagewise independent, but

modified by an adjustment to account for stagewise correlation. The weekly
variance in the empircal inflow distribution is inflated, so that the sum of variances
over two (assumed independent) consecutive weeks is the same as the variance
of this sum estimated from historical data. This is called inflow spreading by
some modellers. We call it Dependent Inflow Adjustment (DIA) and describe
it more fully in [26]. On its own, DIA may not be suffi cient to successfully
represent stagewise dependence, for decisions are not conditioned on previous
inflow observations as they would be under stagewise dependence assumptions.
Risk aversion can serve as a proxy for this effect, as sequences of low inflows
are treated as being more likely than what one would expect from stagewise
independence. Modelling risk aversion using nested coherent risk measures can
also be interpreted from the perspective of a decision maker who is unsure of
the true probability distribution of future inflows, and adopts a distributionally
robust model as described in [24].

4 Market comparison

We now describe a set of experiments that were carried out using data from 2017.
Given costs per MWh of gas, diesel, and coal generation it is possible to compute
the cost of fuel used by the large thermal generators (Contact and Genesis) to
generate the electricity dispatched by the wholesale market in each historical half
hour. This cost can be compared with the same cost as optimized by a central
plan.
There are several diffi culties with such an approach. The first of these con-

cerns dispatch that has limited control. Examples of such dispatch is that from
cogeneration, geothermal plant, run-of-river hydro and wind. Although these
have low marginal cost, their availability is subject to the vagaries of inflows and
wind, and so we cannot centrally dispatch these in a counterfactual. We choose
to fix all cogeneration, geothermal generation, wind generation, embedded gen-
eration, run-of-river generation and small hydro plant at their historical levels.
This leaves the large hydro systems (Manapouri, Clutha, Waitaki and Waikato)
available for control along with the major thermal plants (Huntly (4 units plus
e3p and P40), Otahuhu, Stratford, and Whirinaki). These are the only generators
that we allow to offer energy within our model.
As mentioned above, we treat Manapouri differently from other storage lakes.

This is because Manapouri has complicated nonconvex environmental constraints
on its operation. Ignoring these constraints leads to water releases that might
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violate the legal requirements placed on the system, thereby underestimating the
true cost of the dispatch. To deal with this we constrain Manapouri generation in
DOASA (by using a simple decision rule to determine its release) but impose its
historical generation levels in HydrovSPD. Observe that a water value for Man-
apouri is still computed in DOASA even though its release is fixed in HydrovSPD
to historical levels. Even though we have fixed small generation to its historical
level, some caution must be exercised in fixing too much hydro generation at
historical levels, since this affects the value of stored water7.
In reporting costs, our measure will be the cost of fuel burned by the five

thermal plants. The fuel used in a thermal power station is coal, natural gas or
diesel, as shown in Table 1. Coal is supplied from stockpiles that are restocked
under long-term contracts. Coal costs are assumed to be constant at $4/GJ.
Natural gas is supplied by take-or-pay contracts. It is assumed that in social
planning the supply can be secured and the costs are wholesale prices. The
quarterly average prices of natural gas for wholesale use are available from the
Ministry of Business Innovation and Employment (MBIE) [17]. The quarterly
average prices of diesel for commercial use in [17] are used as the costs of diesel.
The quarterly average prices are converted into real dollars in December 2015
and the costs of CO2 emissions (based on the current CO2 price expressed in
2015 terms8) are added. This gives the fuel and carbon cost of coal, diesel and
gas as shown in Table 2. The short-run marginal cost (SRMC) for any plant can
be obtained by multiplying the heat rate (see Table 1) by the fuel and carbon
cost from Table 2, and adding a variable operations and maintenance cost. These
SRMC values are similar to those assumed by other authors (e.g. [7, page 6,
Table 2]).

.

Power station Heat rate (GJ/MWh) Fuel
Huntly main 1-4 10.3 coal
Huntly e3p 7.2 natural gas
Huntly peaker 9.8 natural gas
Otahuhu B 7.45 natural gas

Stratford peakers 9.5 natural gas
Taranaki Combined Cycle 7.6 natural gas

Whirinaki 11 diesel

Table 1: Thermal power stations and heat rates

7The counterfactual model in the Commerce Commission report authored by Wolak [35]
fixed all hydro generation to historical levels which bounded marginal water values at thermal
fuel costs.

8The costs of CO2 permits are automatically adjusted in our model for regulatory relaxations
(e.g. 1 for 2 schemes) that were applied in some months.
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Table 2: Fuel and CO2 costs for thermal generation in December 2015 NZ
dollars (Source [17], [11]).

To enable a fair comparison with market outcomes, we have de-rated stations
at which plant have been removed for planned maintenance. The weekly de-rating
of a generator is taken by default to be the outage amount given in the POCP
database [30]. If no data are provided for an offering generator in [30], we de-rate
its plant capacity in a given week of the year by the difference between its nominal
capacity and the average total offer quantity made by the plant in the same week
in previous years. The schedule in POCP defines the starting and end time of
scheduled maintenance for generators, which includes the offering generators and
all small and run-of-river generators that we consider as fixed (e.g. Tokaanu,
Rangipo and Waikaremoana). The HVDC line capacity is treated as fixed in
DOASA, but will be assigned its vSPD value for HydrovSPD. All de-rating is
deterministic, so random outages can be anticipated by the social planner.
As discussed above we also make use of costs for unserved load. These depend

on the type of customer and the amount of load reduction as shown in Table 3.

Table 3: Load reduction costs ($/MWh) and proportions of each load that is
industrial, commercial, and residential load.

The last two columns of Table 3 show the proportion of load of each type in
each island. This shows that (rounded to the nearest percentage) 58% of South
Island load is industrial, 17% is commercial, and 24% is residential. The costs (in
NZ$/MWh) of shedding load are also shown in Table 3. We assume that up to
10% reduction in load can be achieved at a relatively low cost, but the value of un-
planned interruption (or reduction above this level) is very high ($10,000/MWh).
Therefore if, for example, load in the South Island was 1000 MW, we could shed
up to 5% of 580 MW at $1000/MWh and at $2000/MWh, we could shed 5%
of 410MW (170MW commercial and 240 MW residential) plus a further 5% of
580MW industrial load.
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5 Experiments

We now present the results of applying DOASA and HydrovSPD to data from the
calendar year 2017. This backtest was conducted for both risk-neutral (λ = 0)
and risk-averse (λ = 0.1 and λ = 0.3) settings, and for two sets of fuel-price data
(provided by MBIE [17] and FNZC[11] respectively). We first discuss results for
MBIE fuel costs and then present results using FNZC fuel costs.

5.1 MBIE fuel costs

The results from DOASA and HydrovSPD assuming MBIE fuel prices are summa-
rized in Table 4 shown below. The rest of this section will compare the solutions
in detail.

5.1.1 Short-run costs

The counterfactual models release more water than the historical dispatch, and
generate more hydroelectricity, resulting in a decrease in thermal cost (from fuel
and CO2 costs). The differences in final reservoir levels can be costed using
the risk neutral cuts from DOASA. These values are shown as cost-to-go figures
in the row labelled “Final storage cost”. When these are taken into account
the cost savings from the counterfactual models are about $36m, $36m, and
$22m. In both risk averse and risk neutral counterfactuals there was a small
amount of load shedding, needed to avoid HydrovSPD returning an infeasible
solution. In real-time dispatch, any infeasibility in a solve of SDP is typically
resolved by relaxing reserve or security constraints. We did not allow this in
the counterfactual. Although the vSPD dispatch solutions in the pricing runs
archived on the EMI site by the Electricity Authority are all feasible, they do not
match actual historical generation, partly because of “constrained-on”dispatch
and partly because river chains are block dispatched in real time. Thus vSPD
dispatch solutions can turn out to be infeasible for HydrovSPD when river-chain
flows are accounted for.
Total thermal generation in Table 4 increases as social risk aversion increases.

(The High-risk-aversion figure of 5736 GWh matches the Historical figure by coin-
cidence; the mix of thermal generation is different as can be seen from the different
thermal cost figures of $311m and $309m.) As risk aversion increases, the amount
of hydro generation decreases and the amount of water released also decreases,
but hydro generation in all counterfactual solutions is higher than historical hy-
dro generation. The final storage cost is computed using risk-neutral water values
corresponding to that week in the final run of DOASA. As residual storage in-
creases with risk aversion the final storage cost (i.e. cost-to-go) decreases. The
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total generation figures are different across the four solutions because of different
transmission losses which are higher in the counterfactual solutions than in the
historical solution. This appears to come from higher levels of South Island gen-
eration in the counterfactual solutions leading to more South-North transmission
flows. Counterfactual rents on the HVDC link are higher than historical rents.

Table 4: Summary of outcomes from EMBER backtest on 2017 assuming MBIE
gas costs. Generation revenue, costs, and rents are computed for large

generation plant only.

5.1.2 Revenue and rent

The results of total revenue and Ricardian rent (in 2015 dollars) are shown in
Table 4. The rents and costs here are calculated using generation quantities and
nodal prices only for those stations that are owned by the five largest electricity
companies. Moreover they account only for costs incurred during the calendar
year 2017; future costs from final reservoir levels (“Final storage costs”) are not
accounted for in rent calculations. Since historical wholesale prices are higher
than counterfactual prices, revenues and rents are higher than counterfactual val-
ues. The differences in Ricardian rent from historical values for 2017 are $671m,
$566m and $263m for the three counterfactual solutions respectively. Even in
the high risk aversion case, when counterfactual final reservoir levels exceed his-
torical ones, we see that there is $263m difference. It should be stressed that
these wholesale rents do not represent total electricity company earnings as they
are not adjusted for retail costs, contracts, or fixed costs. And, as discussed in
the Introduction, to correspond to a competitive equilibrium, the distribution of
rents between companies must be adjusted to account for risk trading between
them.

23



5.1.3 Generation

We now turn our attention from the summary in Table 4, to discuss the details of
differences between the historical solution and the counterfactual solutions. The
differences in generation between historical levels and the counterfactual models
are plotted in Figures 4, 5, and 6. In all the plots in this paper we represent
historical values using purple lines, risk-neutral values using blue lines, mild risk-
averse values (λ = 0.1) using red lines, and high risk-averse values (λ = 0.3) using
green lines. Hydro generation in the counterfactuals is increased in January and
in the second half of 2017. As shown in Figure 5, thermal generation is decreased
in these periods. Total thermal generation increases with risk aversion to low
inflows. The differences in weekly thermal cost are shown in Figure 8. Weekly
total generation (Figure 6) is the same in all three solutions except in January
where increased hydro generation leads to more transmission losses (see Figure
7). For all solutions, the weekly total generation minus transmission losses gives
the same sequence of numbers (corresponding to weekly historical demand minus
fixed generation).

Figure 4: Weekly hydro generation (GWh) in 2017 for MBIE cost model.
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Figure 5: Weekly thermal generation (GWh) in 2017 for MBIE cost model.

Figure 6: Weekly total generation (GWh) in 2017 for MBIE cost model.
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Figure 7: Weekly transmission losses (GWh) in 2017 for MBIE cost model.

Figure 8: Weekly costs of thermal fuel and carbon emissions ($M) in 2017 for
MBIE cost model.
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5.1.4 Reservoir storage

The differences in reservoir storage between historical levels and the counter-
factual models are plotted for North and South Islands in Figure 9. These are
broken down into the storage in individual lakes in Figures 10, 11, 12, and 13.
The counterfactual reservoir levels increase with risk aversion, corresponding to
an increase in thermal generation and a decrease in hydro generation (Table 4)
as risk levels increase.
It is interesting to compare counterfactual reservoir levels against historical

ones. The Hawea levels shown in Figure 10 are adjusted from those reported
in HydrovSPD. In the historical dispatch, the Clyde and Roxburgh dams were
forced to spill by virtue of a resource consent that requires this when the level of
Lake Wanaka exceeds a specified threshhold. This regulation is not modelled in
HydrovSPD, and so we spill water from Hawea around the Clyde and Roxburgh
dams to match the historical spill (Since releases from Lake Wanaka are not
controllable, the level of this lake follows its historical trajectory.)
As shown in Figure 13, the level of Lake Taupo is kept higher in the counter-

factual solutions than in the historical dispatch. Despite this, the counterfactual
solutions generate more hydroelectricity from the Waikato river than observed
historically. Table 5 shows the figures.

.
Historical Risk neutral Mild risk aversion High risk aversion

Generation (GWh) 5022 5413 5353 5248

Table 5: Generation from Waikato river.

There are several possible reasons for these differences. HydrovSPD is clair-
voyant in each day and as reported in [32] this improves the effi ciency of river
chains through improved coordination with other dispatch. Tributary inflows are
estimated from daily measured data at two locations using fixed proportions, and
we fix intraday inflows at their average levels which may allow a more effi cient
dispatch. Moreover the generation output of each station on the river is com-
puted using the fixed conversion factors listed in the generator database on the
EMI site [16]. These conversion factors when compared with historical genera-
tion can sometimes overstate the average effi ciency of the generating plant that
must deal with varying head levels and ineffi cient running. HydrovSPD also does
not model delays in water flows, assuming that water is instantaneously available
downstream when released. High levels of spill are scheduled in some periods
in the counterfactual to transfer water, when required, to downstream stations.
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These modelling features of HydrovSPD allow it to extract more energy from
released water than might be practically possible9.
The levels of Lake Pukaki and Lake Tekapo are shown in Figures 11 and 12.

The generation from Tekapo A and B stations is higher in the counterfactual
solutions than in the historical dispatch. As a result Lake Tekapo is drawn down
more aggressively, hitting its minimum operating level in August (except in the
high risk aversion case). The Ohau stations are also run harder in the counterfac-
tual solutions than they are in the historical dispatch. As a result total Waitaki
generation is higher in the counterfactual model during the winter months than in
the historical dispatch. Compared with historical levels, this leads to an increase
in transmission flow from South to North, and more congestion on the HVDC
line from Benmore to Haywards.
In practice the operators of hydro stations using Lake Tekapo water (Gen-

esis Power) would be reluctant to allow Lake Tekapo storage levels to drop as
low as the counterfactual (blue, red and green) trajectories in Figure 12. As a
company trading in energy, such low lake levels would be risky. The counterfac-
tual solutions, however, operate the whole Waitaki river chain (indeed the whole
electricity system) as a single entity. In this social planning model, the risks of
low levels of Lake Tekapo are balanced by the advantages of extra generation
from stations on the lower part of the Waitaki river system. These stations are
operated by Meridian Energy, a different company who are in practice exposed to
their own set of risks. The lack of coordination between Genesis and Meridian in
the historical dispatch contributes to a solution with a higher overall cost. Ideally
some of this lost coordination benefit could be captured and shared between the
firms by a suitable payment for water transfer between the parties as outlined in
[9].

9We plan future implementations of HydrovSPD that model head effects, reach delays and
higher resolution inflows. However calibration of these models is very diffi cult without full
access to generator data (which is proprietary).
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Figure 9: North Island and South Island reservoir storage (Mm3) in 2017 for
MBIE cost model.

Figure 10: Lake Hawea storage (Mm3) in 2017 for MBIE cost model.
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Figure 11: Lake Pukaki storage (Mm3) in 2017 for MBIE cost model.

Figure 12: Lake Tekapo storage (Mm3) in 2017 for MBIE cost model.
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Figure 13: Lake Taupo storage (Mm3) in 2017 for MBIE cost model.
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5.1.5 Nodal prices

Plots of prices that are generated by the counterfactual policies are shown below.
As mentioned above HydrovSPD can sometimes return an infeasible solution,
resulting in very high prices ($500,000/MWh) in the counterfactual model to
signal the infeasibility. In the market dispatch model SPD, such an outcome
would be resolved by the system operator relaxing a reserve requirement, until
the dispatch was feasible. We model this in the counterfactual as follows. For any
trading periods that have some nodal price of at least $10,000/MWh (our choice of
VOLL) we check if there is any demand violation. If so then any nodal prices above
$10,000/MWh are set to that level. If there is no demand violation in the trading
period then all nodal prices in that period are capped at $1,000/MWh. We chose
this value after observing that 99.8% of historical trading periods without demand
violation have prices below $1,000/MWh.
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Figure 14: Generation-weighted daily average prices ($/MWh) over North Island
grid injection points (for large generators) in 2017 for MBIE cost model.

Figure 15: Generation-weighted daily average prices ($/MWh) over South Island
grid injection points (for large generators) in 2017 for MBIE cost model.
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After capping prices, as above, we compute generation-weighted average prices
(GWAPs) over 2017 as shown in Figure 14 (North Island) and Figure 15 (South
Island) for both risk-neutral and risk-averse solutions. The most striking simi-
larity between these plots is the degree to which historical South Island GWAPs
follow those in the North Island.
This is confirmed by the time-weighted average prices at Benmore, Haywards

and Otahuhu as shown in Table 4. These estimates are approximately equal in the
historical dispatch, but the average Benmore price is $11 lower, $10 lower, and
$14 lower in the three counterfactual models. The difference implies that South
Island electricity prices in 2017 were higher than perfectly competitive levels in
2017. Daily time-weighted average prices for historical and counterfactual models
are plotted for Otahuhu, Haywards and Benmore nodes in Figures 16, 17, and 18
respectively. They show a close match in historical daily prices at Haywards and
Benmore that is not observed in the counterfactual prices.
The price differences between the Benmore and Haywards nodes are higher on

average in the counterfactual models. This results in higher South-North trans-
mission rentals collected from periods when HVDC congestion occurs. These are
of the order of $20 million. Figure 19 shows the accumulation of these transmis-
sion rents over the year for all four solutions. During winter when South-North
flows are small the rental accrual is flat. At the start and end of the year, there
are substantial differences in accrual of transmission rents when Benmore prices
are lower than Haywards as shown in Figures 17 and 18.
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Figure 16: Time-weighted daily average prices ($/MWh) at OTA in 2017 for
MBIE cost model.

Figure 17: Time-weighted daily average prices ($/MWh) at HAY in 2017 for
MBIE cost model.
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Figure 18: Time-weighted daily average prices ($/MWh) at BEN in 2017 for
MBIE cost model.
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Figure 19: Cumulative HVDC rentals over 2017 for MBIE cost model.

5.2 FNZC fuel costs

A second set of experiments were carried out with gas costs provided by First
NZ Capital Securities Ltd (FNZC)10 that result in higher variable costs as shown
in the last two columns of Table 2. The use of gas and coal by thermal plants is
complicated by take-or-pay contracts. If a thermal generator holds a gas contract
for more than they need then they might offer below a nominal fuel cost in order
to burn the excess at an apparent loss. On the other hand a generator who is short
of gas might regard the opportunity cost of gas to be higher than what was paid in
a take-or-pay contract. Gas cost is further complicated by ownership. In 2017 the
Genesis group had a 46% stake in the Kupe field. This makes reported payments
for gas for the group significantly lower than they would be otherwise, where the
cost of gas as an operating expense for Huntly power station is interpreted as an
opportunity cost, i.e. the foregone value of not selling it elsewhere. The results
for FNZC fuel prices are summarized in Table 6 shown below. The rest of this
section will compare the solutions in detail.

10We are grateful to Nevill Gluyas for providing us with these estimates of fuel prices.
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Table 6: Summary of simulation results with FNZC gas costs

5.2.1 Short-run costs

As before, the risk neutral and mild risk-averse counterfactual models release more
water than the historical dispatch, and generate more hydroelectricity, resulting
in a decrease in thermal cost (from fuel and CO2 costs). Including the differences
in final reservoir levels costed using the risk neutral cuts from DOASA, we obtain
total cost savings from the counterfactual models of about $110m, $108m, and
$96m. In both risk-averse and risk-neutral counterfactuals there was a small
amount of load shedding, needed to avoid HydrovSPD returning an infeasible
solution.
Total thermal generation in Table 6 increases as social risk aversion increases.

As risk aversion increases the amount of hydro generation decreases and the
amount of water released also decreases. Observe that the high-risk-aversion
counterfactual solution uses less hydro than the historical solution, and substan-
tially more thermal generation (334 GWh). Prices, revenues and rents for this
counterfactual all exceed the historical values by substantial amounts. In all cases,
counterfactual rents on the HVDC link are substantially higher than historical
rents.

5.2.2 Revenue and rent

The results of revenue, cost and Ricardian rent (in 2015 dollars) are shown in
Table 6. It is remarkable that under the FNZC fuel cost assumptions, historical
rents are lower than those that would be earned under perfect competition, except
if agents are risk-neutral when they are $70m more. In the risk neutral case the
counterfactual revenue is nearly $200m lower than historical but the fuel and CO2
bill for generators is $124m smaller, which gives them Ricardian rents that are
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Figure 20: Weekly hydro generation (GWh) in 2017 for FNZC cost model.

close to historical levels.

5.2.3 Generation and storage

In the interests of completeness we now present plots for the counterfactual solu-
tions obtained with FNZC costs that match the plots from the previous section.
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Figure 21: Weekly thermal generation (GWh) in 2017 for FNZC cost model.

Figure 22: Weekly total generation (GWh) in 2017 for FNZC cost model.
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Figure 23: Weekly transmission losses (GWh) in 2017 for FNZC cost model.

Figure 24: Weekly costs of thermal fuel and carbon emissions ($m) in 2017 for
FNZC cost model.
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Figure 25: North Island and South Island reservoir storage (Mm3) in 2017 for
FNZC cost model.

Figure 26: Lake Hawea reservoir storage (Mm3) in 2017 for FNZC cost model.
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Figure 27: Lake Pukaki reservoir storage (Mm3) in 2017 for FNZC cost model.

Figure 28: Lake Tekapo reservoir storage (Mm3) in 2017 for FNZC cost model.
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Figure 29: Lake Taupo reservoir storage (Mm3) in 2017 for FNZC cost model.
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5.2.4 Nodal prices

Prices that are generated by the counterfactual policies and the rents accruing
are shown below. The generation-weighted average prices (GWAPs) are shown
in Figure 30 for the North Island and Figure 31 for the South Island. These show
similar effects as in the previous simulations with MBIE fuel costs. Observe that
all GWAPs are increased owing to the assumptions of higher fuel cost.

45



Figure 30: Generation-weighted daily average prices ($/MWh) over North Island
grid injection points (for large generators) in 2017 for FNZC cost model.

Time-weighted daily average prices are plotted in Figures 32, 33, and 34.
These show similar differences in Benmore and Haywards prices from HVDC
congestion in the counterfactual models that does not appear in historical dis-
patch. The accrued HVDC rents are shown in Figure 35. Counterfactual HVDC
South-North transmission rents accrued over 2017 are significantly greater than
historical values as shown in Table 6.
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Figure 31: Generation-weighted daily average prices ($/MWh) over South Island
grid injection points (for large generators) in 2017 for FNZC cost model.

Figure 32: Time-weighted daily average prices ($/MWh) at OTA in 2017 for
FNZC cost model.
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Figure 33: Time-weighted daily average prices ($/MWh) at HAY in 2017 for
FNZC cost model.

Figure 34: Time-weighted daily average prices ($/MWh) at BEN in 2017 for
FNZC cost model.
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Figure 35: Cumulative HVDC rentals over 2017 for FNZC cost model.
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6 Conclusions

In this paper we have described some experiments with stochastic optimization
models of the New Zealand wholesale electricity market that provide counterfac-
tual outcomes for competitive markets. As discussed in the introduction these
solutions provide some insight into deviations of historical outcomes from per-
fectly competitive counterfactual solutions (with varying levels of risk aversion).
We conclude the paper with some observations.

1. The outcomes from MBIE and FNZC cost assumptions are different. In the
former case the counterfactual solutions have similar costs to the historical
solution but prices, revenues, and rents are lower. In contrast the FNZC
counterfactual models produce high prices and rents but short-run costs are
much lower than historical values. Observe that we compute both historical
costs and counterfactual costs using the assumed fuel-cost estimates. The
prices from the FNZC risk-neutral counterfactual model give the closest
match to historical values, while both risk-averse counterfactual solutions
yield higher prices.

These outcomes point to the need for regulators to produce audited es-
timates of competitive short-run gas costs that can be used in benchmark
studies. For benchmark studies, an opportunity cost of gas (which will drive
thermal offer prices) is not very helpful. Opportunity costs will be driven
by alternative use, one of which is competing electricity generation. The
opportunity cost then amounts to estimating future electricity prices and
spark spreads for thermal generation, which is likely to result in counterfac-
tual solutions that reproduce those price estimates. In other words, we need
to assume that gas costs come from a competitive gas market with other
uses for the fuel, in order to assess levels of competition in the wholesale
electricity market.

2. The inflow processes used in DOASA are assumed to be stagewise inde-
pendent. This means that a sequence of dry weeks will occur in the model
with lower probability than it would in reality. When reservoir levels are
low, and low inflows persist, this assumption will tend to produce optimistic
estimates of future costs. The marginal water values at low reservoir levels
are therefore likely to be lower in our model than in a model with serial
dependence. We have attempted to account for this dependence using an
inflow adjustment (DIA). With these adjustments, and a suitable choice of
risk aversion, the results of our counterfactual experiments can be made
to match historical reservoir levels reasonably closely at least at a national
level.
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3. One result from this study that is common to both MBIE and FNZC cost
estimates is the difference in HVDC rents accrued by the counterfactual
solutions and historical dispatch, as shown in Figures 19 and 35. Historical
South Island prices are closer to North Island values than they are in all
counterfactual solutions. The differences depend on levels of risk aversion
but are around $10/MWh. There are several implications of this difference.

(a) Water values are computed by generators based on expectations of fu-
ture prices. If these are $10/MWh higher on average than competitive
values then one would expect these premia to be reflected in water val-
ues. Many water valuation models for hydro generators are calibrated
to historical prices. These models then determine offers of the hydro
generators in the wholesale market, who can reasonably claim to be
offering energy at short-run marginal cost (defined by the expected
marginal value of the stored water). However this mis-estimates the
perfectly competitive opportunity cost, since, according to our coun-
terfactual models, these water values are higher than they would be
under (risked) perfect competition.

(b) One might conjecture that lower South Island water values observed
in the counterfactual solutions are a consequence of modelling HVDC
transmission constraints and losses in DOASA. In other words a sim-
pler one-node model of the electricity system would equilibrate water
values in Pukaki and Taupo, and so one would expect more uniform
prices across the country. This would imply that being able to model
transmission in DOASA is a key point of difference that makes it an
improvement over single-node water value models. We tested this in
2017, by running DOASA with no transmission constraints or losses.
The results for 2017 still showed some price separation between South
and North Islands in HydrovSPD, so more analysis is needed to con-
firm this conjecture.

(c) The recent Transmission Pricing Methodology Review Decision [3] has
stated that the HVDC charge on South Island generators “ineffi ciently
discourages investment in South Island generation”. The review states
“Dampening investment in generation pushes electricity prices higher
than they need to be. The Authority considers the new guidelines
will contribute to unlocking renewable generation in the South Island
and lower generation costs for the long-term benefit of New Zealand
consumers.”This statement is true when South Island wholesale en-
ergy prices are competitive, but our experiments indicate they are
around $10/MWh higher in 2017. One might argue that these South
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Island premia arise from generators recovering transmission charges
that they feel are unfairly applied. If this is true then, under the
proposed beneficiary-pays pricing regime, one might hope to see lower
wholesale prices in the South Island.

4. The counterfactual outcomes we report are confined to the wholesale elec-
tricity market, and our models do not include forward contracts or retail
sales. It can be argued that most electricity produced is sold at retail or con-
tract prices, and so it is these prices that should be used in counterfactual
comparisons. Unfortunately it is diffi cult to do this directly as historical
contract quantities and prices are not in the public domain. Under the
assumption of perfect competition, our counterfactual models assume that
generators make contract decisions to share risk. The social planning so-
lution that we compute emerges from the optimal trading of risk between
market participants using these sorts of instruments. We do not attempt
to compute these trades as part of our counterfactual solution; they will
alter the distribution of Ricardian rents that accrue to each agent in our
risk-averse social optimum11. Some of the rents accruing to generators in
periods of high prices will be exchanged through hedge contracts with large
consumers for compensating payments when prices are low. On the other
hand, if generators make some sales in the retail market (i.e. are gentailers)
then this proportion of their revenue is hedged with their retail arm. So
gentailers will retain this proportion of wholesale rents.

We also warn against drawing too many conclusions from differences in
Ricardian rent observed in a single year (i.e. assuming that these hold in
other years). Differences can vary over historical years. In some periods in
2009, historical rents were negative for some generating plant. It would be
wrong to deduce that generators earned less in these periods, since their
contract prices can be above the average value of wholesale prices. On
the other hand, an average of prices computed over several years should
reduce this effect, while still being biased below contract prices, since in
most electricity markets (including New Zealand) contracts are traded at
a premium to expected spot prices (see [5]), so counterfactual wholesale
prices averaged over several years would be expected to be underestimates
of contract prices.

5. As observed above, it is possible (at least in theory) for a Walrasian equi-
librium to give a stochastic process of prices with respect to which every

11Observe that the redistribution of rents through contracts is zero sum, so total rents will
be the same.
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agent optimizes its own expected benefit with the outcome of maximizing
total expected welfare. Such an equilibrium might give a sample path of
prices as observed for example in Figure 17. As shown by [4], the stochastic
process of prices that yields an equilibrium might be very complicated with
none of the stagewise independence properties that make computing opti-
mal policies relatively easy using dynamic programming. From the storage
trajectories shown in Figure 9 and matching price trajectories shown in
Figure 14 and Figure 15, one can see that there are many different price
sequences that will support prudent hydro reservoir releases. Consumers of
electricity value it highly, and price has traditionally been a poor instrument
to control short-term demand. Inelastic demand means offer prices early in
the year in response to a dry-winter forecast may not lead to much change
in consumption or even any change in dispatch. Observed price increases in
these circumstances align with broad economic incentives, but this would
be true for any price increase, at least up to the point where entry of new
generation is prompted.

6. Do the results in this paper support the assertion that the New Zealand
wholesale market is close to perfectly competitive? The short-run costs
of the counterfactual solutions are reasonably close to historical values in
2017, at least in the case of MBIE fuel costs, so the wholesale market
seems to lose little in productive effi ciency. The counterfactual solutions,
however, have a different generation mix, with more hydro generation and
less thermal generation than historical levels. Counterfactual South Island
hydro generation is higher in the early and later parts of the year leading
to larger HVDC transfers to the North. Increased hydro generation leaves
reservoir levels lower at the end of 2017; a higher future cost is exchanged for
a lower thermal fuel cost. The short-run costs of the counterfactual solutions
are significantly lower than historical values when FNZC cost estimates are
used, as fuel costs now account for a higher fraction of overall cost. Accurate
estimates of gas costs are clearly a key requirement to estimating productive
effi ciency.

Historical prices and revenues in the market are higher than counterfactual
values, at least in the case of MBIE fuel costs. Some authors ([6], [31]) have
estimated price markups using benchmark counterfactual models based on
conjectured models of generator behaviour and statistically estimated wa-
ter values. In contrast, our behavioural model assumes profit-maximizing
price-taking agents, and is based on a theoretical alignment between per-
fect competition under risk and social optimization, and water values are
computed using “bottom up”stochastic optimization models. A stochastic
optimization avoids some of the foresight bias observed in the results of [35].
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We have not eliminated bias entirely as HydrovSPD admits full clairvoy-
ance of intra-day inflows. In addition, the benchmark model will still have
some residual bias from relaxing other information constraints that will be
present in a real setting.
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Abstract

New Zealand has an energy-only wholesale electricity market that op-
erates in real time. Before real time, the system operator publishes provi-
sional prices from a sequence of auctions that use forecast demand. Elec-
tricity generators respond to these provisional prices by updating their
offers. We show how this process can lead to ineffi cient dispatch and
electricity prices.

1 Introduction

New Zealand has an energy-only wholesale electricity market that operates in
real time. Before real time, the system operator publishes provisional prices
from a sequence of auctions that use forecast demand. Electricity generators
respond to these provisional prices by updating their offers. We show how this
process can lead to ineffi cient dispatch and electricity prices.
We begin by presenting a stylized two-period model with two competing gen-

erators to show how an inflated forecast of demand might lead to an ineffi cient
dispatch even if this forecast is corrected. We then discuss a setting in which a
sequence of forecasts are made that converge to the final demand. This gives a
sequence of provisional dispatches and prices, called a pre-dispatch, that models
what happens in the New Zealand wholesale market. We prove a theorem that
shows under mild assumptions that this process can lead to ineffi cient dispatch
and prices. The final section of the paper looks at an example of a particular
day, May 5, 2020.

2 A two-period model

Consider a simple example in which a competitive generator (1) with strictly
increasing marginal cost function c1(u1) competes with a generator (2) with
capacity b and marginal cost c2 < c1(0). If demand is d > b then the dispatch
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for generator 1 and 2 respectively is u1 = d− b, u2 = b, the dispatch cost is

C = c2b+

∫ d−b

0

c1(u)du,

and the clearing price is π(d) = c1(d − b). If generator 2 increases their offer
price to any price p < π(d) then the optimal dispatch and clearing price are the
same. This could be interpreted as price-taking behaviour, i.e., generator 2 is
not seeking to influence the price by their offer.
Now suppose that the actual load d is replaced by a forecast d̂, and a pro-

visional auction run with this forecast. If d̂ > d then the provisional clearing
price is π(d̂) = c1(d̂ − b) > π(d). Now if generator 2 increases their offer price
to p = π(d̂) then the optimal dispatch and clearing price are the same as long
as demand is the same as forecast. However if we dispatch plant to meet the
actual load d then we obtain

û1 = c−11 (π(d̂)) = d̂− b > d− b,
û2 = d− û1 < b,

and the clearing price is π(d̂). This is an ineffi cient dispatch since c2 < c1(0) ≤
c1(u), u ≥ 0 implies

c2(d̂− d) =
∫ d̂−b

d−b
c2du <

∫ d̂−b

d−b
c1(u)du,

so the cost of (û1, û2) is

c2(b+ d− d̂) +
∫ d̂−b

0

c1(u)du > c2b+

∫ d−b

0

c1(u)du = C.

Observe that the price markup π(d̂) − π(d) persists, even if the forecast d̂ >
d is corrected in a later period to a correct forecast. Moreover the dispatch
is less effi cient than the perfectly competitive dispatch. This simple example
shows that inaccurate demand forecasts can lead to price markups when the
uncertainty in demand is resolved.

3 Predispatch auctions

In this section we are interested in more general circumstances in which inac-
curate predispatch demand forecasts lead to ineffi cient outcomes. Consider a
setting where the same two generators as in the previous section compete, but a
sequence of auctions is run for a given trading period for increasingly accurate
demand forecasts d̂. Suppose the ISO solves a sequence of dispatch problems
P (k), k = 1, 2, . . ., with forecast demand dk yielding clearing price π(dk). For
convenience, we make the following assumption about forecasts.
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Assumption 1 Demand forecasts satisfy dk > b and are accurate enough so
that |dk − dl| < b for every k, l > 0.

We require the following result.

Lemma 2 Suppose generator 2 offers b at price p and demand is d > b. Then
the clearing price π(d, p) is continuous and nondecreasing in d and p.

Proof. Suppose d is fixed. Then

π(d, p) =

 c1(d− b), p < c1(d− b),
p, c1(d− b) ≤ p < c1(d),
c1(d), p ≥ c1(d),

which is continuous and nondecreasing in p.
Suppose p is fixed. Then

π(d, p) =


c1(d), d ≤ c−11 (p),
p, c−11 (p) < d ≤ c−11 (p) + b,
c1(d− b), d > c−11 (p) + b,

which is continuous and nondecreasing in d.
We now prove the main result of this paper.

Proposition 3 Suppose the ISO solves a sequence of dispatch problems P (k),
k = 1, 2, . . ., with forecast demand dk → d, each yielding clearing price π(dk).
Assume the forecasts satisfy Assumption 1. If for k = 0, 1, 2, . . . , generator
2 offers b at price p = π(dk) to problem P (k + 1), where π(d0) = c2, then
π(dk)→ π(d) if and only if dk ≤ d for every k.

Proof. We show that π(dk) = maxl≤k{c1(dl − b)}, so π(dk) is a nondecreasing
sequence. This shows that π(dk) does not converge to π(d) if any demand
forecasts dk > d. Conversely maxl≤k{c1(dl − b)} is easily shown to converge to
c1(d− b) if dk ↑ d.
Suppose as an induction hypothesis that for some k, π(dk) = maxl≤k{c1(dl−

b)}. This is true for k = 1, since

π(d1) = c1(d1 − b) > c2 = π(d0).

By Lemma 1, we have that the clearing price resulting from problem P (k + 1)
is

π(dk+1) =

 c1(dk+1 − b), π(dk) < c1(dk+1 − b),
π(dk), c1(dk+1 − b) ≤ π(dk) < c1(dk+1),
c1(dk+1), π(dk) ≥ c1(dk+1),

=

 c1(dk+1 − b), maxl≤k{c1(dl − b)} < c1(dk+1 − b),
maxl≤k{c1(dl − b)}, c1(dk+1 − b) ≤ maxl≤k{c1(dl − b)} < c1(dk+1),
c1(dk+1), maxl≤k{c1(dl − b)} ≥ c1(dk+1).
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Now maxl≤k{c1(dl − b)} ≥ c1(dk+1) implies that c1(dl − b) ≥ c1(dk+1) for some
l ≤ k, so dl − b ≥ dk+1 contradicting Assumption 2. Thus the third range for
π(dk+1) cannot occur and

π(dk+1) =

{
c1(dk+1 − b), maxl≤k{c1(dl − b)} < c1(dk+1 − b),
maxl≤k{c1(dl − b)}, c1(dk+1 − b) ≤ maxl≤k{c1(dl − b)},

= max
l≤k+1

{c1(dl − b)},

which yields the result.

This result shows that a sequence of solutions to dispatch auctions in which
agents seek to discover the price might lead to an ineffi cient outcome. The
setting of the theorem with two generators having specific cost structures does
not represent all the nuances of the New Zealand market, but simply highlights
a deleterious feature of a repeated auction mechanism. Precluding generators
from updating offers in light of pre-dispatch information would converge on a
perfectly competitive solution if their original offers were at marginal cost.

4 Example

How often does the phenomenon descibed above occur in actual pre-dispatch
schedules? It would be interesting to examine forecast demands for predispatch
and corresponding offers and clearing prices, and see whether the behaviour
descibed above occurs. Pre-dispatch prices are published on the EMI site of the
New Zealand Electricity Authority. We extracted these for May 5, 2020, and
plot them below.

Predispatch prices and final prices for Benmore on May 5, 2020. Each coloured
line shows a predispatch price schedule (PRSL) computed for the next 72

trading periods, but displayed up to the end of the day.
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Observe that predispatch prices are generally increasing, and converge to
prices that are below the final price. It seems unlikely that demand forecasts
were also increasing towards their true final values as the forecast interval gets
smaller, as this would imply a systematic bias (although a cold front getting
colder faster than predicted might lead to this outcome). A systematic exami-
nation of historical demand forecasts should be able to resolve this.

5 Conclusion

It is diffi cult to say if the imperfection in predispatch described above warrants a
redesign of the New Zealand auction mechanism. It has always been taken as an
article of faith in the New Zealand wholesale market that more frequent auctions
lead to better outcomes, as they enable price discovery. This is certainly the
case in auction settings where purchasers’ valuations are private information
and the seller wishes to extract (and capture) as much of this value as she can.
In an electricity market that is regulated to maximize the long-term benefit of
consumers, it would seem to be strange to move towards more frequent pre-
dispatch auctions that might decrease this benefit.
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