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1 Purpose of this report 
1.1 This document covers a broad range of topics in the electricity market. It is published 

quarterly to provide visibility of the regular monitoring undertaken by the Electricity 
Authority (Authority). 

1.2 This report also includes: 

(a) Exploring NZ's Electricity Generation with Association Rule Mining. 

2 Highlights  
2.1 Weekly load was higher than the historical average1 in January. From mid-February 

onwards, however, weekly load was lower than average. These trends were likely due to 
unseasonably high temperatures associated with La Niña, possibly combined with 
Covid-related behaviour changes - as the country entered the Red traffic light setting.  

2.2 Market share of larger retailers this quarter marginally decreased, while for small-
medium sized retailers it slightly increased, with Electric Kiwi having the greatest growth. 
Trader switches increased, whilst move-in switches remained fairly constant. Trader 
switches may have increased due to the April price increases that some retailers made. 
Move-in switches are driven by how often people are changing where they live.  

2.3 Wholesale electricity prices varied significantly, influenced largely by swings in hydro 
storage. The average spot price for the quarter was $173/MWh, which is over $100/MWh 
greater than the December 2021 quarter. High prices were experienced in January as 
the country experienced low inflows, resulting in some daily average prices over 
$300/MWh, whilst heavy rain in February brought prices close to zero. Other factors 
influencing prices were variable wind generation, higher coal usage and a HVDC outage. 

2.4 Wind generation was lower this quarter compared to last, however, lower wind 
generation does typically occur during a La Niña summer.  

2.5 Nationally hydro storage decreased over the quarter, which is common during a La Niña 
summer. Below average inflows at Lakes Te Anau and Manapouri constrained their 
hydro generation, as they entered their low operating range in late January.  

2.6 Gas spot prices increased substantially compared to last quarter, reaching almost 
$50/GJ on 23 March.   

2.7 Forward prices increased over the quarter, as more participants priced in additional risks 
related to winter 2022, which include possible continued low hydro inflows, upcoming 
gas and generation outages, and increasing thermal fuel costs.  

During the March ETS auction 10.5 million NZUs were sold, after the triggering of the 
cost containment reverse at $70/unit, which added an additional 5.7 million NZUs. 

3 Atmospheric Conditions  
3.1 Since November 2021, the La Niña phase of the EL Niño Southern Oscillation (ENSO), 

has been influencing weather in New Zealand. During La Niña, New Zealand typically 
experiences moist, rainy conditions in the north and east of the North Island and reduced 
rainfall for the lower and western South Island - resulting in reduced inflows for the 
Southern hydro lakes. The country will also tend to experience unusually high sea 

 
1 Averaged over January to March for 2017-2021 
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surface temperatures and air pressure, causing higher temperatures, and generally less 
generation from wind. A composite of a summer pressure and wind pattern during four 
different La Niña events is shown in Figure 1. Areas of above normal pressure are 
shaded in red while areas of below normal pressure are shaded in blue. The wind 
direction is indicated by the arrows.  

Figure 1: Composite La Nina summer pressure and wind patterns over four 
events2 

 

4 Demand 
4.1 In mid-January, the detection of the Covid-19 variant Omicron saw New Zealand move 

into the “Red” “traffic light”, under the COVID-19 Protection Framework. In this setting, 
people were encouraged to work from home, and entry status into businesses, like 
hospitality, was dependent on having a vaccine pass. Unlike the previous alert level 
systems, many businesses remained open and people were able to travel freely.  

4.2 Figure 2 shows total daily national demand for the 2022 March quarter against the 
average daily national demand for the 2017 - 2021 March quarters. Note that the 
historical average is based on the date, so the average for any day will likely include 
weekends (which have different demand patterns from week days). Annotations display 
the weekly percentage difference between the 2022 load and the 2016-2021 historical 
average load.  

4.3 After the Christmas/New Year holiday period, weekly load for the quarter peaked at 658 
GWh, and was 2.6 per cent greater than the historical average. Weekly demand began 
decreasing from mid-February, and was up to 5.5 per cent less than the historical 
average. This is when daily Covid cases in New Zealand began totalling over 1000 per 
day. Weekly load remained lower than January levels throughout March.  

4.4 High load in January may be due to the exceedingly dry and hot conditions, resulting in a 
higher usage of air-conditioning in the North and irrigation in the South. This may have 

 
2 niwa.co.nz/climate/information-and-resources/elnino 



 

 5  

been compounded by a split workforce, with some at home and some in the office. 
Lower than average load in February and March may also be due to the warmer 
temperatures, which were 0.5°C 3 and 1.3°C 4 warmer than 1981-2010 average 
respectively. This could have resulted in less use of heating.  

4.5 Reconciled demand for each month January, February and March 2022 was 3,302 
GWh, 2,987 GWh, and 3,315 GWh respectively.  

Figure 2: Daily Load, March 2022 Quarter vs Historic Average. 

 

5 Retail 
5.1 Over the March 2022 quarter, collective market share of the five largest retailers, being 

Contact, Genesis, Mercury, Meridian and Trustpower5, decreased minimally by 0.11 per 
cent, to 84.06 per cent.  

5.2 On 31 March 2022 the five largest retailers held 1,875,354 ICPs between them, gaining 
1,310 ICPs over the quarter. Small-medium sized retailers held 355,498 ICPs between 
them, gaining 3,019 ICPs.  

5.3 Figure 3 shows the changes in market share of each retailer from 1 January to 31 March 
2022. Electric Kiwi and Contact gained 0.14 and 0.12 per cent of market share 
respectively. The retailer with the greatest decline in market share was Mercury, losing 
0.2 per cent. Genesis also lost 0.14 per cent.  

5.4 The largest regional change in ICPs came from Contact’s gains in Auckland, with an 
increase of 2,635 ICPs over the quarter.  

 
3 Climate Summary for February 2022 | NIWA 
4 Climate Summary for March 2022 | NIWA 
5 As of  1 May 2022 Trustpower sold part of its business to Mercury and changed its name to Manawa Energy. In 

future Electricity Authority reports it will not be bundled with the other large retailers as it has sold it retail 
assets to Mercury. 

https://niwa.co.nz/climate/monthly/climate-summary-for-february-2022
https://niwa.co.nz/climate/monthly/climate-summary-for-march-2022
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Figure 3: Changes in retailer market share6 

 
5.5 Figure 4 shows the number of electricity connections (ICPs) that have changed 

electricity suppliers from 1 April 2021 to 31 March 2022 categorised by type ‘move in’, 
‘trader’ or ‘half hour’. Move in switches are switches where the customer does not have 
an electricity provider contract with a trader, whereas trader switches are switches where 
the customer does have an existing contract with a trader, and the customer obtains a 
new contract with a different trader.  

5.6 Over the quarter trader switches almost doubled, from 6,949 per month in December 
2021 to 12,823 per month in March 2022. Move in switches on the other hand remained 
constant, at roughly 25,000 per month. 

5.7 Compared to the previous five years total trader switches in March were higher than at 
any point in 2021, and move-in switches are roughly the same as March 2021. The 
increase in trader switches could be due to April the price increases made by some 
retailers, causing consumers to shop around.  

 
6 Please note that not all traders fit in the key, please go to emi.govt.nz/r/hcezv to view key with all traders 
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Figure 4: ICP switches by type 2021/22 

 
5.8 All three conditions of sale were met for the sale of Trustpower’s retail business to 

Mercury with the High Court’s decision in mid-December to approve the proposed 
restructuring of Tauranga Energy Consumer Trust’s (TECT) trust deed. The transaction 
has been completed in early May 2022.    

6 Wholesale 
6.1 Wholesale electricity spot prices fluctuated during the March 2022 quarter.  Daily 

average spot prices, from 1 January to 31 March 2022, are shown below in Figure 5. 
Spot prices averaged $173.6/ MWh across all nodes, which is over $100 more than the 
$68.54/MWh average for last quarter.  

6.2 The highest spot price for the quarter was $761/MWh. This occurred on 1 March and 
coincided with a Rankine unit tripping at Huntly, which resulted in extra generation being 
required from hydro and peakers. 

6.3 Spot prices this quarter have been impacted by fluctuating hydro storage. Prices rose in 
January as the country experienced low inflows. In contrast, prices fell to close to zero 
during a large rainfall event in early February. Prices increased in March as hydro 
storage again decreased, see Figure 6.  

6.4 Outages of note for the quarter include a HVDC outage, which caused price separation 
between 16 – 22 February.  There were other large, planned outages at Huntly, TCC 
and Manapouri.  Some of these outages were likely scheduled to coordinate with 
transmission outages, such as the Clutha Upper Waitaki Lines project in the lower South 
Island which began in 2020 and was completed in April 2022.  
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Figure 5: Average Daily Wholesale Spot Prices  

    

Figure 6: Daily national storage and daily average spot price  

 
 

6.5 Generally, outside of unusual circumstances, spot prices increased when grid demand 
increased, wind generation decreased, and gas and coal powered generation increased. 
The relationship between wind generation and prices can be seen in Figure 7, which 
shows national half hourly wind generation for with quarter and instances when 
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unusually high prices occurred. Most high prices7 occurred when wind generation was 
low. Thermal generation offers set high prices for higher tranche offers due to a 
constrained gas supply keeping the cost of thermal generation high, see the relationship 
of high thermal usage often corresponding to high spot prices in Figure 8. Also, 
decreasing hydro storage pushed prices up, as water has been priced high to conserve. 
Figure 6 shows the daily averaged spot price against the national hydro storage. 

Figure 7: Half hourly wind generation  

 
 

Figure 8: Half hourly thermal and peaker generation 

 
 

 
7Classified as when a price is above the 90th percentile of historical prices from 1997-2021 
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6.6 Generation from renewable sources for the quarter averaged just over ~85 per cent of 
total generation. The slight decrease from last quarter is due to reduced hydro 
generation, with the shortfall being picked up by extra thermal. Weekly variation can be 
seen in Figure 9. 

Figure 9: Weekly generation by fuel breakdown    

 
 

Figure 10 shows the percentage of daily generation for the quarter by fuel type. Wind 
generation had a half hourly generation averaging 256 MW for the quarter, 5.9 per cent 
of total generation. Half hourly hydro generation averaged 2,600 MW, 60 per cent of total 
generation, and half hourly thermal generation averaged 624 MW, 14.2 per cent of total 
generation.  
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Figure 10: Average Daily Generation by Fuel Type 

 
6.7 Hydro generation was constrained by a decrease in hydro inflows and storage. Figure 11 

shows total national controlled hydro storage up to 31 March 2022. Over the March 
quarter hydro storage decreased by 1,028 GWh, from 4,4148 GWh on 1 January 2022 
to 3,120 GWh on 31 March 2022.  

6.8 On 1 January 2022 hydro storage was at its highest point for the quarter, and for the 
year thus far, at 125 per cent of historical mean (3,329 GWh) and 94 per cent of nominal 
full (4,412 GWh). On March 31 storage was at its lowest, at 89 per cent of the historical 
mean (3495 GWh) and 70% of nominal full (4,437 GWh) 

6.9 Hydro inflows were low this quarter, especially in the deep south. During the quarter, 
total national inflows were 5,121 GWh, which is 24 per cent less than the historical 
average of 6,767 GWh.  

6.10 Inflows at Lake Manapouri were exceptionally low, at 137 GWh, 65 per cent less than 
the historical average of 393 GWh. Inflows at Lake Te Anau totalled 373 GWh, 59 per 
cent less than the historical average of 909 GWh.  
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Figure 11: Controlled National Hydro Storage 2021/2022 

 
Figure 12 shows the storage of major catchments Lakes Pukaki, Taupo, Tekapo, 
Hawea, Manapouri and Te Anau for the quarter against their historical means and 10th-
90th percentiles based on data from 1926-2022. Storage at Pukaki, Taupo and Tekapo 
was healthy for the first half of the quarter, with all lakes above their historical mean. By 
mid-February, however, all three began declined due to low inflows. By the end of 
March, only Taupo was above its historical average. Storage at Hawea dropped below 
its historical average in mid-January, and was briefly above it again in mid-February. By 
late March, however, Hawea was reaching its 10th percentile.  

6.11 Lake Manapouri levels began dropping to their historical 10th percentile in late January. 
Meridian hit Manapouri’s low operating range by 30 January 2022. While Manapouri is in 
its low operating range draw-down cannot exceed 5 cm per day. This constrained 
generation from Manapouri to ~6-6.5 GWh per day. To manage the situation Meridian 
withdrew Manapouri capacity from the market to maintain full control over drawdown of 
the lake.  

6.12 During February there was spill at Tekapo due to large inflows combined with an 80 MW 
outage at Tekapo B, which occurred from September 2021 – mid February 2022.  
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Figure 12: Major Lake Storage v mean, 10th-90th percentile 

 
6.13 Figure 13 shows gas production by major fields and gas consumption by major users for 

the previous year.  

6.14 Total gas production for the March quarter decreased by 23 TJ/day, from 370 TJ/day on 
1 January 2022 to 347 TJ/day on 31 March 2022.   

6.15 Maui was the largest producing gas field during the quarter, producing an average of 
100 TJ/day before an unexpected outage on 23 March. Output at Maui then reduced, 
and was averaging 93 TJ/day between 23-31 March. Output at McKee averaged 82 TJ/ 
day, before a planned outage on March 21, after which it averaged 60 TJ/day. Kupe 
appears to have begun declining again, after a period of relative plateau. Pohokura 
continues its long-established decline in output, which has fallen from ~245 TJ/day in 
2018, to just 80-85 TJ/day in 2022. 

6.16 Consumption by major gas user Methanex decreased slightly, from 185 TJ/day on 
January 1 to 165 TJ/day on March 30. There were days were consumption suddenly 
dropped by more than 30 TJ/day, these include February 1, March 23-24, and March 31. 
Some of these coincide with higher gas usage at Huntly and or TCC. 

6.17 Huntly gas usage steadily increased throughout the quarter as more baseload demand 
was being met with thermal as hydro generation decreased. Consumption was 41 
TJ/day on January 1 and 86 TJ/day on March 31.  
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Figure 13: Daily Gas Production and Consumption8 2021/2022

 

 
6.18 Despite the availability of surplus gas earlier in summer, there were low injection 

volumes into the Ahuroa underground gas storage (AGS) facility.  Performance issues at 
AGS were confirmed by a footnote in Contact’s 1H FY22 report which noted an 
unexpected and unexplained increase in pressure at AGS. With gas production still 
relatively constrained the effects on the market have been muted, though this may 
change following drilling at Maui B. Storage at the end of March was close to 9 PJ, see 
Figure 14, which is almost double the amount from March 2021. 

 
8 https://www.gasindustry.co.nz/about-the-industry/gas-industry-information-portal/gas-production-and-major-

consumption-charts/ 
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Figure 14: Ahuroa Gas Storage by Month, ending March 20229 

 
6.19 Figure 15 shows the Maui pipeline average marginal price (AMP) for the March quarter. 

Pricing data was taken from BGIX10 (Balancing Gas Information Exchange) which is 
used here as a proxy for gas spot prices. 

6.20 Gas spot prices increased in the March quarter, following their relatively steady and low 
prices seen in Q4 2021, roughly $10/GJ. Prices rose to almost $30/GJ in late January, 
but sank back down to $10-15/GJ in February. Prices increased again in March, peaking 
at ~$50/GJ on March 23.   

6.21 Coal prices similarly rose, with Indonesian coal (the coal Genesis imports) reaching over 
NZ $600/tonne at some points of the quarter, almost four times the price in 2020. This 
was driven mostly by global sanctions on Russian energy resources, including gas, oil 
and coal, as a result of the War in Ukraine. This increased the opportunity cost of 
running the Huntly Rankines to over ~$200/MWh. 

6.22 The latest coal numbers from Genesis put Huntly’s coal stockpile at 817,000 tonnes at 
the end of the March 2022 quarter, a decrease of 18,000 tonnes from December 2021. 
This is, however, 526,000 tonnes more than the March 2021 quarter. Note thermal 
generation offers tend to reflect the opportunity cost of using thermal fuel with offers 
based on current market prices rather than costs incurred.   

6.23 Notably, coal use this quarter at Huntly increased substantially from Q4 2021, as seen in 
Figure 16.  

 

 
 

 
9 https://www.gasindustry.co.nz/data/gas-storage/  
10 BGIX - Balancing Gas Information Exchange 

https://www.bgix.co.nz/prices
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Figure 15: Daily Spot Gas Prices 

 
Figure 16: Estimated fuel usage at Huntly 2021/22 
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7 Forward Market  
7.1 The ASX forward price curve provides a view of future wholesale spot prices. Figure 17 

shows forward prices for Otahuhu and Benmore at the beginning of the quarter and at 
the end of the quarter to illustrate how forward prices have changed.  

7.2 Short term forward prices (June 2022 and October 2022 quarters) rose by around 
~$100/MWh and ~$80/MWh respectively over the quarter, sitting between $200/MWh 
and $260/MWh on 31 March 2022. Long term forward prices rose by roughly $50/MWh.  

7.3 These rises were fueled by high coal prices, high carbon prices, a prolonged trend of low 
hydro inflows, skewed North and South Island hydro storage, generation outages and 
gas outages, as well La Niña. Collectively, forward prices are reflecting all these factors 
as participants factor in cost and risk. 

7.4 Forward prices in mid-2022 were priced at around ~$230/MWh, indicating that the 
market is factoring in higher than usual supply risk for winter 2022. Below average gas 
production and potential low future inflows at the time increased market participant 
concerns that the same conditions that caused high prices in 2021 could repeat in 2022.  

7.5 The concern for low potential future inflows came from NIWA’s January 2022 - March 
2022 climate outlook11 which reported La Niña conditions continuing in the equatorial 
Pacific during Autumn. During La Niña rainfall in the lower and western South Island is 
reduced which usually results in below average inflows and storage levels in South 
Island catchments. 

7.6 On top of current limited gas production, short term forward prices also factor in the risk 
gas outages scheduled in early 2022, at the Māui and Mangahewa, which could pose to 
thermal generation capacity. Maui is scheduled to undergo maintenance for 31 days 
from 7 May 2022, undergoing a full field outage from 14 May 2022. Concerns were that 
should these outages extend or return at less than full capacity thermal generation 
availability would be reduced when it is most needed right before the peak demand 
winter period. 

 

 

 

 

 

 

 

 

 

 

  

 
11 Seasonal climate outlook January 2022 - March 2022 | NIWA 

https://niwa.co.nz/climate/seasonal-climate-outlook/seasonal-climate-outlook-january-2022-march-2022
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Figure 17: Future Prices   

 
7.7 Long term forward prices compared to five years ago are noticeably higher. One of the 

factors that appears to play a role in the rise in forward prices is the increasing price of 
carbon which increases the costs of running thermal generation.   

7.8 Figure 18 shows spot NZ carbon unit prices since the first ETS auction began in 2020, 
taken from CommTrade’s (a platform for buying and selling NZ ETS carbon credits 
owned by Jarden Securities Limited) website.  

7.9 Overall carbon prices rose by 81.3 per cent in 2021. During the March ETS auction 10.5 
million NZUs were sold, after the triggering of the cost containment reserve at $70/unit, 
which added an additional 5.7 million NZUs. 

7.10 How the price of carbon feeds into thermal generation costs is that approximately ~40 
per cent of the price of carbon is added to the final cost of generation for a CCGT 
(thermal plant) and ~50-60 per cent for OCGTs (peaker plants) when run on gas and 
~100 per cent when run on coal. For example, when carbon is at $70/tonne an additional 
~$28/MWh to ~$35/MWh would be added to the running cost of gas fired generation 
thermal generation and ~$70/MWh would be added to coal fired generation.  

7.11 The gas outlook for 2023 should be greatly improved compared to 2022, with gas 
production increases expected at multiple fields. Some of the expected drops in gas 
prices, however, are likely to be offset by continued increases in carbon prices with the 
cap for ETS auctions in 2023 set to $78.40/tonne and $87.81/tonne in 2024. It is not 
clear that generators are facing gas supply constraints this winter, so the increased 
supply may simply mean more production by Methanex.  

7.12 With current renewable generation sources such as wind and solar too intermittent and 
capacity too low to provide the baseload and firming capacity that thermal generation 
currently does thermal plants are expected to continue to influence the market for a few 
more years to come.  
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Figure 18: New Zealand Carbon Unit Spot Price12 

 
 

8 Deep Dive: Exploring NZ’s Electricity Generation with 
Association Rule Mining 

8.1 Included in this report is analysis which uses the machine learning algorithm Apriori to 
find relationships between different types of electricity generation in New Zealand. The 
Apriori algorithm identifies relationships or association rules between different datasets 
and evaluates the strength of these rules using statistical methods. 

8.2 This study analysed half hourly generation data from North Island thermal stations at 
Huntly, Taranaki, and Whirinaki; North Island hydro generation; North Island wind farms 
in Bunnythorpe (which includes the Tararua region); and South Island hydro at the major 
lakes (Waitaki, Manapouri, Clutha) from 1 January 2016 – 21 December 2021, and 
temperature data from Auckland, Wellington and Christchurch. 

8.3 The analysis found many association rules, many of which are commonly known, such 
as the economic relationship between gas prices and thermal generation. The Authority 
plans follow up work on the output from this modelling to investigate the different 
associations that exist in the spot market.  

 
12 https://www.commtrade.co.nz/ 
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Executive summary 
This report is an overview of how machine learning algorithms can be used to find the 
relationships between different types of electricity generation in New Zealand. The Authority is 
undertaking this work to explore the interactions between generators as they compete in the 
spot market. In doing so we hope to understand the competitive process of the spot market 
more thoroughly.  

 

 

 



 

 iii 1 June 2022 1.53 pm 

Contents 
Executive summary ii 
1 Introduction 1 

2 Method 1 
Apriori in a nutshell 1 
Association Rules 2 

Support 2 
Confidence 3 
Lift 3 
Conviction 3 

Apriori algorithm 4 

3 Datasets 4 
GIPs 4 
Weather data 5 
Gas price 6 

4 Market basket analysis vs GIP generation 7 

5 Results 12 
Overview of results 13 
Further discussion 16 

6 Conclusions, future work 18 
Future work 18 

References 20 
 
 
 

 



 

 1 1 June 2022 1.53 pm 

1 Introduction 
1.1 We use the Apriori algorithm for association rule mining (Agrawal et al., 1993; Agrawal & 

Ramakrishnan, 1994) to identify the underlying relationships between GIPs across the 
country. The algorithm is often used in market basket analysis (i.e. shopping habits of 
customers). However with some modifications, we repurpose the algorithm to explore 
the relationships between different types (thermal, wind, hydro) and quantities (MW) of 
electricity generation.  

1.2 We build a model that considers wind generation in Tararua and Bunnythorpe; thermal 
generation at Huntly and Taranaki; hydro generation at Manapouri, Clutha, and Waitaki; 
average marginal gas price; and temperature in Auckland and Wellington. We use 
Python's mlxtend package (Raschka, 2018) to see how these variables relate to each 
other. We use half hourly data that covers the six year period between 2016 and 2021. 
We identify association rules which describe the relationships between different types of 
generation and Auckland/Wellington temperatures. 

2 Method 
2.1 Association rule learning is a rule-based machine learning method for discovering 

relationships between variables in large databases (Tan, 2019; Bramer, 2020). The 
Apriori algorithm is one example of the method. It identifies relationships or 
\textit{association rules} between different itemsets and evaluates the strength of these 
rules using statistical methods. It is intended as a proposition of the type 

antecedent ⇒ consequent 

for example,  

wind generation is low ⇒ Huntly runs at full capacity. 

2.2 This rule is not intended to be deterministic, and therefore a probability is associated with 
it. Such probabilistic association rules assign a probability to the consequence once the 
condition has been fulfilled. 

2.3 The next section is an overview of the mechanisms behind Apriori. Although we use 
market basket analysis as an example, the same principles can be appropriated to study 
electricity generation after performing transformations on the dataset. 

Apriori in a nutshell 
2.4 Apriori is an algorithm for frequent itemset mining and association rule learning for 

boolean datasets. The aim is to determine rules that highlight general trends in the 
dataset. To make the algorithm simple to understand, assume we have a list of items in 
a shopping basket for different customers.  

2.5 Mathematically, there are two quantities to consider: 

𝐽𝐽 = {𝑗𝑗1, 𝑗𝑗2. … , 𝑗𝑗𝑛𝑛}, (1) 

 

a set of 𝑛𝑛 different items. For the shopping example, 𝐽𝐽 can show all available products in 
a shop: bread, milk, apples, etc. Secondly, 

𝐷𝐷 = {𝑡𝑡1, 𝑡𝑡2. … , 𝑡𝑡𝑚𝑚}, (2) 
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is a set of 𝑚𝑚 transactions. Each transaction 𝑡𝑡𝑚𝑚 is equivalent to a customer receipt and 
consists of a subset of items from set 𝐽𝐽 (i.e. a list of products from the shop). From these 
lists, we develop rules that describe the strong associations between variables.  

2.6 A rule is defined as an implication of the form 

𝑋𝑋 ⇒ 𝑌𝑌 (3) 

where  

𝑋𝑋,𝑌𝑌 ⊆ 𝐽𝐽 (4) 

and 𝑋𝑋 and 𝑌𝑌 are disjoint itemsets 

𝑋𝑋 ∩ 𝑌𝑌 = 0. (5) 

2.7 𝑋𝑋 and 𝑌𝑌 are subsets of 𝐽𝐽 (eq. (4)) but do not have common elements (eq. (5)). In the 
shopping example, this means 𝑋𝑋 and 𝑌𝑌 are lists of one or more products in the shop but 
the lists cannot have the same products. 

2.8 Here is an example: A customer's receipt 𝐷𝐷 contains the products 𝐽𝐽 = {bread, rice, pasta, 
milk, toothpaste}. We create arbitrary itemsets 𝑋𝑋 = {bread, rice, milk} and 𝑌𝑌 = {pasta}. 
Hence one possible rule is {bread, rice} ⇒ {pasta}. This means a customer who buys 
bread and rice (antecedents) is likely to buy pasta (consequent). 

Association Rules 
2.9 Now the question is, how do we measure the strength of a rule? In other words, is it 

reliable enough to be used as an association rule? The following metrics allow us to 
determine the most meaningful and significant rules: 

• support (Agrawal et al., 1993), 

• confidence (Agrawal et al., 1993),  

• lift (Brin et al., 1997), 

• conviction (Brin et al., 1997). 

Support 
2.10 Support of itemset 𝑋𝑋 is a proportion of total transactions that contain 𝑋𝑋, 

support(𝑋𝑋) =
no. transactions where 𝑋𝑋 appears

total no. transactions
. (6) 

2.11 Similarly, 

support(𝑋𝑋 ⇒ 𝑌𝑌) =
no. transactions where both 𝑋𝑋 and 𝑌𝑌 appear

total no. transactions
. (7) 

2.12 Support is an important measure because rules that have low support may occur simply 
by chance. Hence this quantity helps to identify the rules worth considering for further 
analysis.  

2.13 If we only want to consider the itemsets that occur at least 50 times out of a total of 1000 
transactions, we set the minimum support level of the algorithm to be 0.05. The idea is to 
focus computational resources to search for associations between frequently bought 
items while ignoring the infrequent ones. 
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2.14 If an itemset has a low support, we do not have enough information on the relationship 
between its items and hence no conclusions can be drawn from such a rule. 

Confidence 
2.15 Confidence measures the reliability of the inference made by a rule. By definition, it is 

the conditional probability of the occurrence of consequent given the antecedent, 

confidence(𝑋𝑋 ⇒ 𝑌𝑌) =
no. transactions with both 𝑋𝑋 and 𝑌𝑌

total no. transactions with 𝑋𝑋
=

support(𝑋𝑋 ∪ 𝑌𝑌)
support(𝑋𝑋) . (8) 

where 𝑋𝑋 ∪ 𝑌𝑌 is the union of itemsets 𝑋𝑋 and 𝑌𝑌. It means that every time a customer 
purchases 𝑋𝑋, there is a probability (eq. (8)) they will also purchase 𝑌𝑌. It provides an 
estimate of the conditional probability of 𝑌𝑌 on 𝑋𝑋, i.e.  

𝑃𝑃(𝑌𝑌|𝑋𝑋) =
𝑃𝑃(𝑋𝑋 ∪ 𝑌𝑌)
𝑃𝑃(𝑋𝑋) = confidence(𝑋𝑋 ⇒ 𝑌𝑌). (9) 

2.16 A high confidence value does not necessarily give an accurate picture if the consequent 
appears frequently in the dataset. The confidence would be high regardless of the 
antecedents. If we know intuitively that two itemsets have weak association a high 
confidence value could be misleading. This is why we use the lift metric. 

Lift 
2.17 Lift calculates a conditional probability of 𝑌𝑌 on 𝑋𝑋 (like for confidence) but also considers 

the frequency of consequent 𝑌𝑌, 

lift(𝑋𝑋 ⇒ 𝑌𝑌) =
support(𝑋𝑋 ∪ 𝑌𝑌)

support(𝑋𝑋) ⋅ support(𝑌𝑌) �
= 1
> 1
< 1

. (10) 

2.18 There are three possible cases: 

• lift(𝑋𝑋 ⇒ 𝑌𝑌) = 1 implies that the probability of 𝑋𝑋 and 𝑌𝑌 being bought together is 
statistically insignificant. The purchases of these itemsets are independent of 
each other, and there is no statistically proven relationship. 

• lift(𝑋𝑋 ⇒ 𝑌𝑌) > 1 implies that 𝑋𝑋 and 𝑌𝑌 are more likely to be bought together 
(positive dependence). The higher the lift value, the stronger the dependence. 
The itemsets are complements to each other. 

• Similarly, lift(𝑋𝑋 ⇒ 𝑌𝑌) < 1 implies that 𝑋𝑋 and 𝑌𝑌 are less likely to be bought 
together (negative dependence). The lower the lift value, the lower the 
dependence. The itemsets are substitutes of each other. 

Conviction 
2.19 Conviction is another way to measure association: 

conviction(𝑋𝑋 ⇒ 𝑌𝑌) =
1 − support(𝑌𝑌)

1 − confidence(𝑌𝑌) �= 1
> 1. (11) 

2.20 The possible cases are: 

• conviction(𝑋𝑋 ⇒ 𝑌𝑌) = 1 means that 𝑋𝑋 and 𝑌𝑌 are not associated. 

• conviction(𝑋𝑋 ⇒ 𝑌𝑌) > 1 implies a relationship exists. 
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2.21 The higher the conviction, the stronger the relationship. Generally, high 
confidence(𝑋𝑋 ⇒ 𝑌𝑌) with low support(𝑌𝑌) produces high conviction. When 
confidence(𝑋𝑋 ⇒ 𝑌𝑌) = 1, then conviction(𝑋𝑋 ⇒ 𝑌𝑌) is infinity. This means the dataset shows 
𝑋𝑋 is always bought with 𝑌𝑌, and confidence is 100 %. 

2.22 Compared to lift, 

lift(𝑋𝑋 ⇒ 𝑌𝑌) = lift(𝑌𝑌 ⇒ 𝑋𝑋), (12) 

conviction is a directed measurement, 

conviction(𝑋𝑋 ⇒ 𝑌𝑌) ≠ conviction(𝑌𝑌 ⇒ 𝑋𝑋). (13) 

and indicates a directional relationship between 𝑋𝑋 and 𝑌𝑌. 

Apriori algorithm 
2.23 The Apriori algorithm is straightforward. It follows the steps: 

(i) Calculate support for itemsets of size 1. 

(ii) Apply the minimum support threshold and discard itemsets that do not meet 
the threshold. 

(iii) Move on to itemsets of size 2 and repeat steps above. 

(iv) Continue the same process until no additional itemsets satisfying the 
minimum threshold can be found. 

2.24 Finally, arguably the most important step is using domain-specific knowledge to analyse 
the results. We use our judgement to decide whether the algorithm outputs a sensible 
association rule.  

2.25 The algorithm only relies on numerical inputs and knows nothing about macroeconomics 
or NZ's electricity system. The inferences made by association rules do not necessarily 
imply causality -- instead they suggest strong co-occurrence relationships between items 
in the antecedent and consequent. 

3 Datasets 
3.1 All generation data in this report is from EA's database. As a first look, we will consider 

North Island thermal stations at Huntly and Taranaki; North Island wind farms in 
Bunnythorpe (which includes the Tararua region); and South Island hydro generation at 
the major lakes (Waitaki, Manapouri, Clutha).  

3.2 We also consider the temperature at major population centres in Auckland and 
Wellington.  

3.3 We take the total half hourly generation (MW) and average temperature1 (Kelvin). 

GIPs 
3.4 We use data that covers the period from 1 Jan 2016 to 31 Dec 2021. This consists of 

roughly 6 x 365 x 48 = 105,000 time points. We consider the GIPs 

• H = Huntly thermal generation: total generation at nodes HLY2201 HLY1, HLY2, 
HLY3, HLY5, HLY6.  

 
1  Source: Weather Underground. 
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• T = Taranaki thermal generation: MKE1101 MKE1, JRD1101 JRD0, SFD2201 
SFD21, SFD2201 SFD22, SFD2201 SPL0, KPA1101 KPA1, HWA1102 WAA1. 

• B = Bunnythorpe wind generation: BPE0331 TWF0, WDV1101 TAP0, TWC2201 
NZW0, TWC2201 TWF0, LTN0331 TWF0, LTN2201 TUR0. 

• W = Waitaki hydro generation 

o Tekapo: TKA0111 TKA1, TKB2201 TKB1; 

o Ohau: OHA2201 OHA0, OHB2201 OHB0, OHC2201 OHC0; 

o Benmore: BEN2202 BEN0; 

o Aviemore: AVI2201 AVI0; 

o Waitaki: WTK0111 WTK0. 

• C = Clutha hydro generation 

o Roxburgh: ROX1101 ROX0, ROX2201 ROX0; 

o Clyde: CYD2201 CYD0. 

• M = Manapouri hydro generation: MAN2201 MAN0. 

3.5 For brevity, we assign labels H, T, B, W, C, M to indicate the total generation of selected 
GIPs that are grouped by geography and fuel type. 

Weather data 
3.6 Apparent temperature 𝑇𝑇𝐴𝐴 measures what an observer feels (Steadman, 1984). It 

considers four environmental factors: wind, temperature, humidity, and radiation from the 
sun: 

𝑇𝑇𝐴𝐴 = 𝑇𝑇𝑀𝑀 + 0.348𝐸𝐸 − 0.70 �𝑤𝑤𝑠𝑠 −
𝑄𝑄

𝑤𝑤𝑠𝑠 + 10
� − 4.25 (14) 

with dry bulb (measured) temperature 𝑇𝑇𝑀𝑀 (°C); wind speed 𝑤𝑤𝑠𝑠 (m/s) at an elevation of 
10m; net radiation absorbed per unit area of body surface 𝑄𝑄 (W/m2); and water vapour 
pressure (humidity), 

𝐸𝐸 =
RH
100

6.105 𝑒𝑒17.27𝑇𝑇𝑀𝑀/(237.7+𝑇𝑇𝑀𝑀) (15) 

in hPa where RH is relative humidity (%).  

3.7 For simplicity, we assume that the observer is outdoors in the shade so 𝑄𝑄 = 0.  

3.8 Instead of considering three environmental factors separately, the apparent temperature 
is a more compact way to estimate how hot or cold it feels in major population centres 
(Auckland, Wellington) and therefore the likelihood that many people will switch on air 
conditioners and heaters. 

3.9 In summary, we consider two more parameters, 

• X = Auckland apparent temperature 

• Y = Wellington apparent temperature 

3.10 Note it is more convenient to work in units of Kelvin (K) instead of degrees Celsius (°C). 
This means the temperatures 𝑇𝑇K are always positive, 
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𝑇𝑇K = 𝑇𝑇°C + 273 (16) 

and will make it easier to perform discretisation in the next section. 

Gas price 
3.11 We also consider average marginal gas price2 ($/GJ). 

 

Figure 1  
Raw data. 

 
Source: Electricity Authority, Weather Underground, BGIX. 
 

3.12 For visualisation purposes, Figure 1 and Figure 2 show the generation, temperature and 
gas price in 2016-2021.  

 

 
2  Source: BGIX. 
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Figure 2  
Box plot of parameters. Red line is median, blue circles are outliers, green x marker is mean. 

 
Source: Electricity Authority 
 

3.13 Manapouri supplies electricity to the Tiwai aluminium smelter, so we expect generation 
to have flat peaks (Figure 3) during operating hours. Figure 1 also suggests that when 
Manapouri generates over 600 MW, it is running at full capacity. 

 

Figure 3  
Manapouri hydro generation in May 2020 and Nov 2018. 

 
Source: Electricity Authority 
 

4 Market basket analysis vs GIP generation 
4.1 At this point, it's fair to ask, how can association rule mining be used to understand the 

relationship between different generation types?  

4.2 The answer lies in discretisation, i.e. binning the continuous data, and one-hot encoding. 

4.3 The first five rows of raw data are 



 

 8 1 June 2022 1.53 pm 

 

Table 1  
Date Huntly  

(H) 
Taranaki  
(T) 

Bunny-
thorpe 
(B) 

Waitaki  
(W) 

Clutha  
(C) 

Mana-
pouri  
(M) 

Auckland  
(X) 

Welling-
ton  
(Y) 

Gas  
(G) 

2016-01-01 
00:00:00 

510.83 31.42  164.21 948.59 253.27 255.46 290.44 288.13 8.8 

2016-01-01 
00:30:00 

493.16 31.36 154.82 954.82 153.96 256.34 289.41 286.37 8.8 

2016-01-01 
01:00:00 

504.50 31.04 132.71 872.26 156.89 255.01 289.10 286.68 8.8 

2016-01-01 
01:30:00 

512.86 31.89 112.31 820.13 158.44 255.57 289.41 287.82 8.8 

2016-01-01 
02:00:00 

500.45 31.28 91.78  800.56 154.42 255.23 288.79 287.01 8.8 

 

 

Source: Electricity Authority 
 

4.4 Discretisation is often used for handling continuous attributes. It groups the adjacent 
values of a continuous attribute into a finite number of intervals.  

4.5 From inspecting Figure 1, it appears sensible to bin the thermal and hydro data in 100 
MW intervals, wind in 50 MW intervals, Auckland and Wellington temperatures in 5 K 
intervals, and gas price in $5 /GJ intervals.  

4.6 For simplicity, we assign labels to the bins3 in Table 2 and Table 3. 

 

Table 2  
Bins for generation and gas price 

Thermal/hydro  Wind  Gas 
Bin (MW) Label  Bin (MW) Label  Bin ($/GJ) Label 
0 0  0 0  0 0 
(0, 100] 1  (0, 50] 1  (0, 5] 1 
(100, 200] 2  (50, 100] 2  (5, 10] 2 
… …  … …  … … 
(100(k-1), 100k] k  (50(k-1), 50k] k  (5(k-1), 5k] k 
 

 
 

 

 

Table 3 
Bins for temperature 

Bin (Kelvin, K) Bin (Celsius, °C) Label 
(0, 5]  0 
(5, 10]  1 
… … … 

 
3  Interval notation (100, 200] means 100 MW < generation ≤ 200 MW. 
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Bin (Kelvin, K) Bin (Celsius, °C) Label 
 (2, 7] 55 
 (7, 12] 56 
 (12, 17] 57 
 (17, 22] 58 
 (22, 27] 59 
 (27, 32] 60 
(5k, 5(k + 1)] (5k - 273, 5(k + 1) - 273] k 
 

 

Source: Electricity Authority 
 

and transform the raw data into Table 4 

 

Table 4  
Binned data 

Date H, 

binned 

T, 

binned 

B, 

binned 

W, 

binned 

C, 

binned 

M, 

binned 

X, 

binned 

Y,  

binned 

G, 

binned 
2016-01-01 
00:00:00 

6 1 4 10 3 3 59 58 2 

2016-01-01 
00:30:00 

5 1 4 10 2 3 58 58 2 

2016-01-01 
01:00:00 

6 1 3 9 2 3 58 58 2 

2016-01-01 
01:30:00 

6 1 3 9 2 3 58 58 2 

2016-01-01 
02:00:00 

6 1 2 9 2 3 58 58 2 

 

 

Source: Electricity Authority 
 

where the labels represent the different sites of interest (H, T, B, W, C, M = generation; 
X, Y = weather; G = gas price) and the subscripts are bin names. 

4.7 We can think of the table as containing categorical features. Although the bin labels are 
assigned numerical values (0, 1, 2, ..., k), there is no specific order of preference and all 
labels should have equal importance. 

4.8 But using numerical values adds bias to the model -- the temperature bins have much 
larger label values than the other data. The model would give greater weight (higher 
preference) to the temperature variables.  

4.9 This calls for a binary True/False or 1/0 style of categorising, namely the one-hot 
encoding technique in Table 5. 

 

Table 5  
One-hot encoding of binned data (Table 4). 

Date H0 H1 H2 H3 H4 H5 H6 H7 … T0 T1 T2 T3 T4 T5 T6 … B0 … 
2016-01-01 
00:00:00 

0 0 0 0 0 0 1 0 … 0 1 0 0 0 0 0 … 0 … 
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Date H0 H1 H2 H3 H4 H5 H6 H7 … T0 T1 T2 T3 T4 T5 T6 … B0 … 
2016-01-01 
00:30:00 

0 0 0 0 0 1 0 0 … 0 1 0 0 0 0 0 … 0 … 

2016-01-01 
01:00:00 

0 0 0 0 0 0 1 0 … 0 1 0 0 0 0 0 … 0 … 

2016-01-01 
01:30:00 

0 0 0 0 0 0 1 0 … 0 1 0 0 0 0 0 … 0 … 

2016-01-01 
02:00:00 

0 0 0 0 0 0 1 0 … 0 1 0 0 0 0 0 … 0 … 

 

 

Source: Electricity Authority 
 

where the labels represent the different sites of interest (generation or weather) and 
subscripts are bin names. 

4.10 The binary format shows that each row and column corresponds to a transaction and 
item respectively. In our example, the transaction is analogous to the types and 
quantities of generation and temperature of a specific trading period.  

4.11 An item is treated as a binary variable whose value is one if the item is present in a 
transaction and zero otherwise. Because the presence of an item in a transaction is 
often considered more important than its absence, it is an asymmetric binary variable. 

4.12 We add some more columns to represent time features, 

𝑞𝑞 = �1,
0,  

weekend
not weekend (17) 

𝑟𝑟 = �1,
0,  

NZ public holiday
not NZ public holiday. (18) 

4.13 Instead of defining time by trading period (1 to 48), we let 𝑡𝑡𝑘𝑘 represent four-hourly 
periods where 

𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

0,
1,
2,
3,
4,
5,

  

00: 00 to 03: 59
04: 00 to 07: 59
08: 00 to 11: 59
12: 00 to 15: 59
16: 00 to 19: 59
20: 00 to 23: 59

 (19) 

so that each bin contains eight consecutive trading periods. This reduces the number of 
table columns as well as giving an idea of the peak morning and evening demand.  

4.14 Finally, we define the year 𝑦𝑦𝑘𝑘 where 

𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

16,
17,
18,
19,
20,
21,

  

1 Jan 2016 to 31 Dec 2016
1 Jan 2017 to 31 Dec 2017
1 Jan 2018 to 31 Dec 2018
1 Jan 2019 to 31 Dec 2019
1 Jan 2020 to 31 Dec 2020
1 Jan 2021 to 31 Dec 2021

. (20) 

4.15 The truncated Table 5 shows that in the first row (1 Jan 2016, midnight), Huntly units 
generated 500-600 MW (H6 = 1) and Taranaki generated less than 100 MW (T1 = 1). It is 
not shown here but Bunnythorpe generated 150-200 MW (B4 = 1), Waitaki generated 
900-1000 MW (W10 = 1), and Clutha and Manapouri each generated 200-300 MW (C3 = 
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M3 = 1). Auckland temperature was 22 to 27 °C (X59 = 1) and Wellington was 17 to 22 °C 
(Y58 = 1). Gas price on 1 Jan was $5-10 /GJ (G2 = 1). That day was a public holiday (r = 
1) and weekday (q = 0). 

4.16 The table size depends on the number of degrees of freedom. In this case, the table has 
in total 

[(22 thermal) + (7 wind) + (32 hydro) + (17 temperature) + (7 gas) + (14 time)] columns 

x (6 years) x (365 days) x (48 trading periods) ~ 10 million cells. 

4.17 This is important to consider, as large datasets take more computational time and 
resources to process. As a rule of thumb, "large" datasets contain >100,000 cells. 

4.18 The table is analogous to the market basket example. Instead of studying the products 
that customers buy, we consider the location, type, and amount of generation (and 
temperature range). For example, H6 means that Huntly thermal generation was 500-600 
MW. H6 is analogous to one specific item in a customer's shopping basket. 

4.19 One major difference is table structure. In this dataset, for every trading period there is 
always one True value for each of: H, T, B, W, C, M, X, Y, G, t, y. The probability that it 
will appear in an itemset of antecedents or consequents depends on the number of bins 
(Table 6). 

 

Table 6 
No. bins indicates probability P that bin k of parameter x will appear in association rule. 

Parameter (x) No. bins (k) P(xk) ~ 1/k 
H (Huntly) 13 0.08 
T (Taranaki) 9 0.11 
B (Bunnythorpe) 7 0.14 
W (Waitaki) 15 0.07 
C (Clutha) 8 0.125 
M (Manapouri) 9 0.11 
X (Auckland) 8 0.125 
Y (Wellington) 9 0.11 
G (gas price) 7 0.14 
q (weekend) - 2/7 ~ 0.28 
r (public holiday)  - 12/365 ~ 0.03 
t (time period) 6 0.17 
y (year) 6 0.17 
 

 

Source: Electricity Authority 
 

4.20 For example, if all variables were independent then the rule 

[H6, B4,𝑞𝑞, X59] ⇒ [C3] 

would have the following properties. The antecedent support is the probability of all 
items being grouped together in the antecedent [H6, B4,𝑞𝑞, X59], 

𝑃𝑃(H6) × 𝑃𝑃(B4) × 𝑃𝑃(𝑞𝑞) × 𝑃𝑃(X59) ≃ 4 × 10−4. (21) 

Similarly the consequent support is 
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𝑃𝑃(C3) = 0.125. (22) 

4.21 Hence the support of the rule is  

4 × 10−4 × 0.125 ≃ 5 × 10−5, (23) 

i.e. a 0.005 % chance that the association rule would occur in a given trading period. If 
these variables were dependent, the rule's support measure would be higher. 

4.22 Figure 4 shows a histogram of the one-hot encoded data. The highest number of 
occurences is G2 (49 %). This means that gas price was $5-10 /GJ for about 35 months 
of the six year period. The second highest was M8 (36 %), where Manapouri generated 
700-800 MW for 38,000 trading periods or 26 months. In comparison, there were roughly 
22 months where Taranaki (T1) generated under 100 MW. 

 

Figure 4 
Fraction of the total number of trading periods in 1 Jan 2016 to 31 Dec 2021 period. Top 20 
instances shown. 

 
Source: Electricity Authority 
 

5 Results 
5.1 The Apriori algorithm requires us to define the minimum support. As mentioned above, 

this measure can be exploited by the algorithm to efficiently search for the most relevant 
association rules.  

5.2 Because of the inherent nature of the dataset, most table elements are zero -- by 
definition a sparse matrix. This means the minimum support level should be small. As a 
first test, we try with 0.01. 

5.3 For a table with d = 99 columns, there are up to 2𝑑𝑑 ∼ 6 × 1029 possible itemsets4. The 
total number of possible association rules is (Tan, 2019) 

 
4  To give a sense of scale, there are roughly 5× 1030 bacterial cells on Earth. 
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���𝑑𝑑ℓ� × ��𝑑𝑑 − ℓ
𝑗𝑗 �

𝑑𝑑−ℓ

𝑗𝑗=1

� = 3𝑑𝑑 − 2𝑑𝑑+1 + 1 ∼ 1047
𝑑𝑑−1

ℓ=1

, (2421) 

i.e. 100 quattuordecillion5, with binomial coefficients  

�𝑑𝑑ℓ� =
𝑑𝑑!

ℓ! (𝑑𝑑 − ℓ)!
. (25) 

5.4 In our dataset, for every trading period there is always one True value for each of: H, T, 
B, W, C, M, X, Y, G, t, y. This would decrease the total number of possible itemsets 
(1029) and association rules (1047) by several orders of magnitude. 

5.5 The following table of results is organised according to decreasing confidence. To 
reduce the number of rows, we filter out the most relevant results using the following 
conditions: 

• Ignore all association rules where both antecedents and consequents contain 
any uncontrolled variables, i.e. wind generation (B), temperature (X, Y), and time 
features (q, r, t, y).  

• Ignore all rules where consequents contain only uncontrolled variables. 

• Only consider trustworthy rules where confidence is greater than 0.6. 

5.6 Returning to Figure 4, because the gas prices were $5-10 /GJ for a large number of days 
(G2), we should not be surprised if many of the association rules contained G2. This also 
applies to M8 (Manapouri, 700-800 MW) and B1 (Bunnythorpe, < 100 MW). The full list of 
results (available upon request) shows that a large proportion of rules contain these 
parameters. 

5.7 Because Manapouri's generation is routed to the Tiwai smelter, we can assume that 
their daily demand will be approximately the same regardless of how much the other 
hydro and thermal stations are generating. As a result, any association rules containing 
Manapouri (Mk) as a consequent should be taken with a grain of salt. 

Overview of results 
5.8 The results table contains over 400 association rules so we discuss a subset (Table 7), 

ordered by decreasing confidence. 

 

Table 7 
Subset of results. 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

0 [H3, M8, y21] [T1] 0.0132 0.3039 0.0132 0.9971 3.2806 238.9253 
1 [H3, y21, G3] [T1] 0.0128 0.3039 0.0126 0.9835 3.2358 42.1121 
3 [y18, X60] [G2] 0.0137 0.4980 0.0126 0.9232 1.8541 6.5404 
11 [y18, X59, B1] [G2] 0.0148 0.4980 0.0126 0.8505 1.7079 3.3572 
21 [X59, H3, Y58] [T1] 0.0134 0.3039 0.0110 0.8179 2.6911 3.8229 
33 [G1, y16, H4, C6] [M8] 0.0131 0.3618 0.0104 0.7972 2.2033 3.1468 

 
5  There are 5 × 1046 possible legal chess positions. 
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 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

41 [q, H3, M8] [T1] 0.0162 0.3039 0.0127 0.7862 2.5868 3.2561 
73 [y16, t3, C6] [M8] 0.0143 0.3618 0.0106 0.7426 2.0523 2.4792 
77 [C7, B5] [M8] 0.0280 0.3618 0.0207 0.7390 2.0424 2.4451 
159 [W9, C7] [M8] 0.0206 0.3618 0.0141 0.6849 1.8929 2.0253 
73 

 

Source: Electricity Authority 
 

5.9 Row 0 shows the association rule 

[H3, M8,𝑦𝑦21] ⇒ [T1]. 

The antecedents are H3 (Huntly generated 200-300 MW), M8 (Manapouri generated 700-
800 MW) and y21 (this rule applies to trading periods in 2021). The consequent is T1 
(Taranaki generated less than 100 MW).  

5.10 The lift is 3.3 which suggests a strong positive dependence between antecedents and 
consequent. If Huntly and Manapouri generated 200-300 MW and 700-800 MW 
respectively during a trading period in 2021, then it was 3.3 times as likely that Taranaki 
would have generated under 100 MW (compared to a trading period where Huntly and 
Manapouri didn't generate this amount).  

5.11 A confidence value of 0.997 means that Taranaki would have almost certainly generated 
less than 100 MW during a trading period in 2021 if Huntly and Manapouri had 
generated 200-300 MW and 700-800 MW respectively.  

5.12 The extremely high conviction (240) confirms the existence of a relationship between the 
antecedents and consequent.  

5.13 From inspecting Figure 1 and Figure 3, it also seems likely that Manapouri would have 
run at or near full capacity. Figure 1 suggests that this rule could more likely have 
occurred during the second half of 2021 - this was when Huntly generation had a 10-90 
% percentile range of 200-670 MW. In the first half of the year, Huntly had a range of 
490-980 MW. 

5.14 Similarly, row 1 shows the association rule 

[H3,𝑦𝑦21, G3] ⇒ [T1]. 

5.15 If Huntly generated 200-300 MW and gas price was $10-15 /GJ in 2021, the confidence 
of 0.98 suggests that there was a 98 % chance that Taranaki would have generated less 
than 100 MW.  

5.16 Like the previous rule, a lift of 3.2 suggests a strong positive dependence between 
antecedents and consequent. The antecedent and consequent support of this 
association rule are 0.0128 and 0.3039 respectively. They show the probability that all 
items are grouped together in the antecedent or consequent.  

5.17 To compare, if these items were completely independent then the probability of them 
being in the antecedent itemlist would have antecedent support: 

𝑃𝑃(H3) × 𝑃𝑃(𝑦𝑦21) × 𝑃𝑃(G3) ≃ 0.002 < 0.0128. (26) 

Similarly the consequent support would be 

𝑃𝑃(T1) ≃ 0.111 < 0.3039. (27) 
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Hence if all items were independent, the support of the rule would be  

0.002 × 0.111 ≃ 2 × 10−4, (28) 

i.e. a 0.02 % chance that the association rule would occur in a given trading period. If 
these variables were dependent, the support measure would be 0.013 or 1.3 %, 
according to Table 7. 

5.18 Row 41 

[𝑞𝑞, H3, M8] ⇒ [T1] 

suggests that if Huntly and Manapouri generated 200-300 MW (H3) and 700-800 MW 
(M8) during a weekend (q = 1) trading period, there was a 79 % chance that Taranaki 
would have generated under 100 MW. 

5.19 Rows 3, 11, and 21 show association rules when Auckland is 22-27 °C (X59) and 27-32 
°C (X60).  

5.20 Row 3 

[𝑦𝑦18, X60] ⇒ [G2] 

suggests that when Auckland was 27-32 °C (X60) in 2018, there was a 92 % chance 
(confidence = 0.92) that gas price would be $5-10 /GJ (G2). From inspecting Figure 1, it's 
likely that this would have occurred during the summer heatwave in Jan-Feb 2018. The 
lift of 1.85 also indicates a strong positive dependence between the antecedents and 
consequent.  

5.21 In comparison, row 11 

[𝑦𝑦18, X59, B1] ⇒ [G2] 

suggests that when there was little wind generation at Bunnythorpe (B1, less than 50 
MW) and Auckland was 22-27 °C (X59) in 2018, there was an 85 % chance (confidence = 
0.85) that gas price would be $5-10 /GJ (G2). 

5.22 Row 21 

[X59, H3, Y58] ⇒ [T1] 

shows that when Huntly generated 200-300 MW and Auckland and Wellington were 22-
27 °C and 17-22 °C respectively, there was an 82 % chance (confidence = 0.82) that 
Taranaki would have generated less than 100 MW. 

5.23 These rules may seem counterintuitive - in hot weather we would expect higher 
generation and higher gas prices due to increased demand from air conditioners. 
However the absence of certain items in the itemsets (like strong hydro generation at 
Waitaki/Clutha) means that such events may have occurred. The presence of an item in 
the itemset is considered more important than its absence, so we cannot say for certain 
Waitaki or Clutha's level of generation. 

5.24 Rows 33, 73, 77, and 159 show strong hydro generation at Clutha (C6 and C7) in the 
antecedent itemset with Manapouri generating 700-800 MW as a consequent.  

5.25 Row 33 

[G1,𝑦𝑦16, H4, C6] ⇒ [M8] 

shows that in 2016, if gas price was under $5 /GJ, Huntly generated 300-400 MW, and 
Clutha generated 500-600 MW, then there was an 80 % chance (confidence = 0.8) that 



 

 16 1 June 2022 1.53 pm 

Manapouri generated 700-800 MW. The lift indicates there is a strong positive 
dependence between the antecedents and consequent. 

5.26 To compare, row 73 

[𝑦𝑦16, 𝑡𝑡3, C6] ⇒ [M8] 

shows that during a trading period between noon and 3pm (t3), if Clutha generated 500-
600 MW (C6), there was a 74 % chance that Manapouri would generate 700-800 MW 
during their operating hours.  

5.27 Similarly, row 77 

[C7, B5] ⇒ [M8] 

suggests that given strong wind generation at Bunnythorpe (B5, 200-250 MW) and 
strong hydro at Clutha (C7, 500-600 MW), there was a 74 % chance that Manapouri 
would generate 700-800 MW in the same trading period. 

5.28 Row 159 

[W9, C7] ⇒ [M8] 

shows the relationship between hydro generation at Waitaki, Clutha and Manapouri. 
Because lift is a non-directed measurement, we can say that  

lift([W9, C7] ⇒ [M8]) = lift([M8] ⇒ [W9, C7]) = 1.9. 

5.29 The lift for row 159's rule is 1.9, so there is a strong positive dependence between 
Waitaki/Clutha generation and Manapouri. If Manapouri generated 700-800 MW, it was 
1.9 times as likely that Waitaki (W9) and Clutha (C7) generated 800-900 MW and 600-
700 MW respectively (compared to a trading period where Manapouri didn't generate 
700-800 MW). 

Further discussion 
5.30 The following tables show the top 10 rules ordered by decreasing support, confidence, 

lift, and conviction. 

 

Table 8 
Top 10 rules, decreasing support. 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

304 [y17] [G2] 0.1681 0.4980 0.1077 0.6404 1.2862 1.3963 
366 [y18] [G2] 0.1659 0.4980 0.1044 0.6295 1.2643 1.3552 
257 [C7] [M8] 0.1377 0.3618 0.0896 0.6506 1.7980 1.8263 
466 [H3] [T1] 0.1245 0.3039 0.0765 0.6145 2.0219 1.8058 
505 [G1, y16] [M8] 0.0841 0.3618 0.0512 0.6091 1.6833 1.6325 
401 [T1, C6] [M8] 0.0807 0.3618 0.0505 0.6251 1.7277 1.7023 
92 [y17, B1] [G2] 0.0666 0.4980 0.0484 0.7271 1.4602 1.8397 
378 [H4, C6] [M8] 0.0748 0.3618 0.0470 0.6278 1.7351 1.7147 
212 [y18, M8] [G2] 0.0671 0.4980 0.0445 0.6632 1.3319 1.4907 
456 [Y57, y16] [M8] 0.0709 0.3618 0.0437 0.6162 1.7031 1.6629 
 

 

Source: Electricity Authority 
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Table 9 
Top 10 rules, decreasing confidence. 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

0 [H3, M8, y21] [T1] 0.0132 0.3039 0.0132 0.9971 3.2806 238.9253 
1 [H3, y21, G3] [T1] 0.0128 0.3039 0.0126 0.9835 3.2358 42.1121 
2 [H3, y21] [T1] 0.0235 0.3039 0.0229 0.9738 3.2041  26.6028 
3 [y18, X60] [G2] 0.0137 0.4980 0.0126 0.9232 1.8541 6.5404 
4 [X56, y17] [G2] 0.0118 0.4980 0.0108 0.9176 1.8428 6.0941 
6 [y17, H7] [G2] 0.0167 0.4980 0.0149 0.8956 1.7986 4.8097 
7 [H4, M8, y21] [T1] 0.0143 0.3039 0.0125 0.8763 2.8831 5.6253 
8 [r, G1] [T1] 0.0129 0.3039 0.0113 0.8757 2.8814 5.6019 
9 [y18, Y59] [G2] 0.0183 0.4980 0.0160  0.8709 1.7489 3.8878 
11 [y18, X59, B1] [G2] 0.0148 0.4980 0.0126 0.8505 1.7079 3.3572 
 

 

Source: Electricity Authority 
 

 

Table 10 
Top 10 rules, decreasing lift. 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

172 [H4, y16, X58] [G1] 0.0213 0.2036 0.0145 0.6801 3.3403 2.4895 
200 [H4, Y57, y16, M8] [G1] 0.0151 0.2036 0.0101 0.6694 3.2880 2.4092 
0 [H3, M8, y21] [T1] 0.0132 0.3039 0.0132 0.9971 3.2806 238.9253 
1 [H3, y21, G3] [T1] 0.0128 0.3039 0.0126 0.9835 3.2358 42.1121 
2 [H3, y21] [T1] 0.0235 0.3039 0.0229 0.9738 3.2041  26.6028 
509 [H4, y21] [G3] 0.0251 0.1936 0.0153 0.6087 3.1437 2.0610 
512 [H4, T1, y21] [G3] 0.0209 0.1936 0.0127 0.6079 3.1395 2.0567 
319 [H4, X59, y17] [G1] 0.0191 0.2036 0.0122 0.6389 3.1380 2.2054 
484 [H4, Y57, y16] [G1] 0.0272 0.2036 0.0167 0.6125 3.0085 2.0554 
500 [X59, y16, M8] [G1] 0.0240 0.2036 0.0146 0.6096 2.9939 2.0397 
 

 

Source: Electricity Authority 
 

 

Table 11 
Top 10 rules, decreasing conviction 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

0 [H3, M8, y21] [T1] 0.0132 0.3039 0.0132 0.9971 3.2806 238.9253 
1 [H3, y21, G3] [T1] 0.0128 0.3039 0.0126 0.9835 3.2358 42.1121 
2 [H3, y21] [T1] 0.0235 0.3039 0.0229 0.9738 3.2041  26.6028 
3 [y18, X60] [G2] 0.0137 0.4980 0.0126 0.9232 1.8541 6.5404 
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 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

4 [X56, y17] [G2] 0.0118 0.4980 0.0108 0.9176 1.8428 6.0941 
7 [H4, M8, y21] [T1] 0.0143 0.3039 0.0125 0.8763 2.8831 5.6253 
8 [r, G1] [T1] 0.0129 0.3039 0.0113 0.8757 2.8814 5.6019 
6 [y17, H7] [G2] 0.0167 0.4980 0.0149 0.8956 1.7986 4.8097 
14 [H4, y21] [T1] 0.0251 0.3039 0.0209 0.8316 2.7362 4.1336 
15 [H3, M8, Y58] [T1] 0.0122 0.3039 0.0102 0.8315 2.7358 4.1309 
 

 

Source: Electricity Authority 
 

5.31 We now take the top 100 rules ordered by support, confidence, lift and conviction, then 
find a common set of rules from each subset (Table 12). 

 

Table 12 
Intersection of top 100 rules ordered by support, confidence, lift and conviction. 

 antecedents consequents antecedent 
support 

consequent 
support 

support confidence lift conviction 

2 [H3, y21] [T1] 0.0235 0.3039 0.0229 0.9738 3.2041  26.6028 
14 [H4, y21] [T1] 0.0251 0.3039 0.0209 0.8316 2.7362 4.1336 
24 [H3, Y58] [T1] 0.0295 0.3039 0.0239 0.8105 2.6667 3.6732 
36 [X59, H3] [T1] 0.0261 0.3039 0.0207 0.7947 2.6147 3.3902 
44 [G1, y16, C6] [M8] 0.0307 0.3618 0.0239 0.7799 2.1554 2.8991 
 

 

Source: Electricity Authority 
 

5.32 These association rules suggest that there is a strong relationship (positive dependence) 
between thermal generation, year, and temperature in the major population centres. 
There also appears to be a relationship between gas price and hydro generation in 
2016. 

 

6 Conclusions, future work 
6.1 This report is a first attempt at using the association rule mining algorithm Apriori to find 

relationships between GIPs (NI thermal, SI hydro, Bunnythorpe wind generation), gas 
price, and apparent temperature in major population centres.  

6.2 There is evidence of causality due to strong co-occurrent relationships between 
Auckland/Wellington temperatures, gas prices, hydro and thermal generation.  

6.3 There is a strong positive dependence between Waitaki, Clutha and Manapouri hydro 
generation, as well as between Huntly and Taranaki thermal units. 

Future work 
6.4 The following is a list of ideas and avenues for further investigation. 

• Instead of focussing on different sites and generation types, it would be 
interesting to explore the relationships between different gentailers (Mercury, 
Meridian, Contact, Genesis). 
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• Find other ways to bin the data (e.g. different sized bins for gas price). Explore 
different constraints for the algorithm like minimum support level and minimum 
confidence. 

• Investigate the relationships of predispatch prices and offer stacks at different 
nodes.
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